首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intestinal micro-organisms of Liolophura japonica chitons converted arsenobetaine [(CH3)3As+CH2COO?] to trimethylarsine oxide [(CH3)3AsO] and dimethylarsinic acid [(CH3)2AsOOH] in the arsenobetaine-containing 1/5 ZoBell 2216E medium under aerobic conditions, no conversion being observed in an inorganic salt medium. This conversion pattern of arsenobetaine → trimethylarsine oxide ← dimethylarsinic acid was comparable with that shown by the microorganisms associated with marine macroalgae. On the other hand, no conversion was observed in either medium under anaerobic conditions.  相似文献   

2.
Arsenic compounds were extracted with chloroform/methanol/water from tissues of marine animals (four carnivores, five herbivores, five plankton feeders). The extracts were purified by cation and anion exchange chromatography. Arsenobetaine [(CH3)3As+CH2COO?], dimethylarsinic acid [(CH3)2AsOOH], trimethylarsine oxide [(CH3)3AsO] and arsenite, arsenate, and methylarsonic acid [(CH3)AsO(OH)2] as a group with the same retention time were identified by high-pressure liquid chromatography. Arsenic was determined in the collected fractions by graphite furnace atomic absorption spectrometry. Arsenobetaine found in all the animals was almost always the most abundant arsenic compound in the extracts. These results show that arsenobetaine is present in marine animals independently of their feeding habits and trophic levels. Arsenobetaine-containing growth media (ZoBell 2216E; solution of inorganic salts) were mixed with coastal marine sediments as the source of microorganisms. Arsenobetaine was converted in both media to trimethylarsine oxide and trimethylarsine oxide was converted to arsenite, arsenate or methylarsonic acid but not to dimethylarsinic acid. The conversion rates in the inorganic medium were faster than in the ZoBell medium. Two dominant bacterial strains isolated from the inorganic medium and identified as members of the Vibro–Aeromonas group were incapable of degrading arsenobetaine.  相似文献   

3.
A method for the separation and identification of inorganic and methylated arsenic compounds in marine organisms was constructed by using a hydride generation/cold trap/gas chromatography mass spectrometry (HG/CT/GC MS) measurement system. The chemical form of arsenic compounds in marine organisms was examined by the HG/CT/GC MS system after alkaline digestion. It was observed that trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. Also, dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae. It is thought that most of the trimethylated arsenic is likely to be arsenobetaine since this compound released trimethylarsine by alkaline digestion and subsequent reduction with sodium borohydride. The major arsenic compound isolated from the water-soluble fraction in the muscle and liver of sharks was identified as arsenobetaine from IR, FAB Ms data, NMR spectra and TLC behaviour. The acute toxicity of arsenobetaine was studied in male mice. The LD50 value was higher than 10 g kg−1. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These results suggest that arsenobetaine has low toxicity and is not metabolized in mice. The LD50 values of other minor arsenicals in marine organisms, trimethylarsine oxide, arsenocholine and tetramethylarsonium salt, were also examined in mice.  相似文献   

4.
Trimethylarsine oxide [(CH3)3AsO] has been shown to be easily reducible by various biological species, including both aerobic and anaerobic micro-organisms, some skin organisms, soil bacteria, sludge and rumen fluid. The results suggest an enhanced mobility for arsenic owing to facile production of the volatile (CH3)3As species.  相似文献   

5.
Tolerance, bioaccumulation, biotransformation and excretion of arsenic compounds by the fresh–water shrimp (Neocaridina denticulata) and the killifish (Oryzias latipes) (collected from the natural environment) were investigated. Tolerances (LC50) of the shrimp against disodium arsenate [abbreviated as As(V)], methylarsonic acid (MAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB) were 1.5, 10, 40, and 150μg As ml?1, respectively. N. denticulata accumulated arsenic from an aqueous phase containing 1 μg As ml?1 of As(V), 10 μg As ml?1 of MAA, 30 μg As ml?1 of DMAA or 150 μg As ml?1 of AB, and biotransformed and excreted part of these species. Both methylation and demethylation of the arsenicals were observed in vivo. When living N. denticulata accumulating arsenic was transferred into an arsenic–free medium, a part of the accumulated arsenic was excreted. The concentration of methylated arsenicals relative to total arsenic was higher in the excrement than in the organism. Total arsenic accumulation in each species via food in the food chain Green algae (Chlorella vulgaris) → shrimp (N. denticulata) → killifish (O. latipes) decreased by one order of magnitude or more, and the concentration of methylated arsenic relative to total arsenic accumulated increased successively with elevation in the trophic level. Only trace amounts of monomethylarsenic species were detected in the shrimp and fish tested. Dimethylarsenic species in alga and shrimp, and trimethylarsenic species in killifish, were the predominant methylated arsenic species, respectively.  相似文献   

6.
Two lanthanide complexes with 2-fluorobenzoate (2-FBA) and 1,10-phenanthroline (phen) were synthesized and characterized by X-ray diffraction. The structure of each complex contains two non-equivalent binuclear molecules, [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2 and [Ln(2-FBA)3?·?phen]2 (Ln?=?Eu (1) and Sm (2)). In [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2, the Ln3+ is surrounded by eight atoms, five O atoms from five 2-FBA groups, one O atom from ethanol and two N atoms from phen ligand; 2-FBA groups coordinate Ln3+ with monodentate and bridging coordination modes. The polyhedron around Ln3+ is a distorted square-antiprism. In [Ln(2-FBA)3?·?phen]2, the Ln3+ is coordinated by nine atoms, seven O atoms from five 2-FBA groups and two N atoms of phen ligand; 2-FBA groups coordinate Ln3+ ion with chelating, bridging and chelating-bridging three coordination modes. The polyhedron around Ln3+ ion is a distorted, monocapped square-antiprism. The europium complex exhibits strong red fluorescence from 5D0?→?7F j ( j?=?1–4) transition emission of Eu3+.  相似文献   

7.
Normal coordinate analyses and force constant calculations were carried out using frequencies of infrared and Raman-spectra of the molecules and ions RAsO32?, RAs(O)(OR)2, RAs(O)(OH)2, RAs(OH)O2?, RzAsO2?, R2As(O)OH, and [R'2As(OH)2]+ (R = CH3, R' = C2H5). Comparing bond orders of the AsO bond with those in corresponding phosphorus, selenium and sulphur compounds, we found influences of the electron deficiency effect and of bond polarity.  相似文献   

8.
Reaction of Dimethylamino Dimethylarsine with 1,2-Diols The reactions of (CH3)2As? N(CHs3)2 with 1,2-diols lead to the formation of the esters (CH3)2As? O? CR2? CR2? O? As(CH3)2 and (CH3)2As? O? CR2? CR2? OH. The same reaction with HS? CH2CH2? OH yields only (CH3)2As? S? CH2CH2OH, whereas the cleavage of the As? N bond with HS? CH2CH2? SH results in mixture of mono- and diesters. The mechanism and its influence on the products are discussed. IR and 1H-NMR spectral data are presented.  相似文献   

9.
The reaction mechanisms for oxidation of CH3CCl2 and CCl3CH2 radicals, formed in the atmospheric degradation of CH3CCl3 have been elucidated. The primary oxidation products from these radicals are CH3CClO and CCl3CHO, respectively. Absolute rate constants for the reaction of hydroxyl radicals with CH3CCl3 have been measured in 1 atm of Argon at 359, 376, and 402 K using pulse radiolysis combined with UV kinetic spectroscopy giving ??(OH + CH3CCl3) = (5.4 ± 3) 10?12 exp(?3570 ± 890/RT) cm3 molecule?1 s?1. A value of this rate constant of 1.3 × 10?14 cm3 molecule?1 s?1 at 298 K was calculated using this Arrhenius expression. A relative rate technique was utilized to provide rate data for the OH + CH3 CCl3 reaction as well as the reaction of OH with the primary oxidation products. Values of the relative rate constants at 298 K are: ??(OH + CH3CCl3) = (1.09 ± 0.35) × 10?14, ??(OH + CH3CClO) = (0.91 ± 0.32) × 10?14, ??(OH + CCl3CHO) = (178 ± 31) × 10?14, ??(OH + CCl2O) < 0.1 × 10?14; all in units of cm3 molecule?1 s?1. The effect of chlorine substitution on the reactivity of organic compounds towards OH radicals is discussed.  相似文献   

10.
A new telechelic polyisobutylene diol, HO? CH2? PIB? CH2? OH, carrying two terminal primary hydroxyl end groups has been prepared from α,ω-di(isobutenyl)polyisobutylene, CH2?C(CH3)- CH2? PIB? CH2C(CH3)?CH2, by regioselective hydroboration followed by alkaline hydrogen peroxide oxidation. Infrared (IR) spectra, 1H-NMR analysis of the pure and silylated products, and ultraviolet (UV) spectra of phenylisocyanate-treated diols indicate quantitative yields and two ? CH2OH termini per polyisobutylene chain. The viscosity of HO? CH2? PIB? CH2? OH is higher than that of the starting α,ω-diolefin. The telechelic diol prepolymer opens new avenues to the synthesis of many new materials, e.g., polyurethanes.  相似文献   

11.
An arsenobetaine [(CH3)3As+CH2COO] solution reference material, NMIJ CRM 7901-a, intended for use in the speciation of arsenic compounds, was developed and certified by the National Metrology Institute of Japan (NMIJ), part of the National Institute of Advanced Industrial Science and Technology (AIST). The high-purity arsenobetaine powder was synthesized from trimethylarsine [(CH3)3As], and it was dissolved in water in order to prepare 20 mg kg−1 of arsenobetaine standard solution. The solution was bottled in 500 bottles (each containing 10 ml). Certification of the CRM for arsenobetaine was conducted by NMIJ. The concentration of As was determined by four independent analytical techniques (ICP–MS, ICP–OES, GFAAS and LC–ICP–MS), and each result was converted to the arsenobetaine concentration by applying an appropriate factor. The arsenobetaine concentration in the CRM was thus certified.  相似文献   

12.
The acute toxicity of arsenocholine was examined in mice by oral administration and intravenous injection. The LD50 values of arsenocholine were 6.5 g kg?1 for oral administration and 187 mg kg?1 for oral administration and 187 mg kg?1 for intravenous injection. Decreases of respiration and spontaneous motility were observed in the mice dosed orally at 12 g kg?1. The animals exhibited ataxia and finally showed paralysis of the hind legs within 20 min of administration. When arsenocholine was administered orally to mice at 5 or 50 mg As kg?1, the greater part of the arsenic administered was recovered in urine within 96 h. The metabolite of arsenocholine in urine was identified as arsenobetaine by high-performance liquid chromatography-inductively coupled plasma emission spectrometry (HPLC ICP) and fast atom bombardment mass spectrometry (FAB MS). These results suggested that the major part of orally administered arsenocholine was absorbed from the gastrointestinal tract in mice and then rapidly excreted in urine with biotransformation.  相似文献   

13.
Arsenobetain [(CH3)3As+CH2COO-]-containing growth media (1/5 ZoBell 2216E and solution of inorganic salts) were inoculated with two bacterial strains, which were isolated from a coastal sediment and identified as members of the Vibro-Aeromonas group, and incubated under aerobic and anaerobic conditions. Arsenobetaine was converted to a metabolite only under aerobic conditions. This arsenic metabolite was identified as dimethylarsinic acid [(CH3)2AsOOH] by hydride generation/cold trap/GC MS/SIM analysis and high-performance liquid-chromatographic behaviour. The conversion pattern shown by these arsenobetaine-decomposing bacteria (that is, arsenobetaine → dimethylarsinic acid) was fairly different from that shown by the addition of sediment itself as the source of arsenobetaine-decomposing micro-organisms (that is, arsenobetaine → trimethylarsine oxide → inorganic arsenic). This result suggests to us that various micro-organisms, including the arsenobetaine-decomposing bacteria isolated in this study, participate in the degradation of arsenobetaine in marine environments.  相似文献   

14.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

15.
In this study, we observed the first in vivo acute immunotoxicity of a trimethyl(2‐hydroxyethyl)arsonium cation, namely arsenocholine (AsCho), which is present in marine animals that are ingested daily as seafood in many countries. It has been reported that AsCho has significant acute in vivo toxicity. A high dose of the synthetic pure AsCho was administered to CDF1 mice intraperitoneally (0.1 g kg?1 mouse weight) or orally (a total of 10.0 g kg?1 mouse weight); its effect on the immune organs and immune effector cells was assessed. Administered AsCho, especially via the oral route, showed weak and partial, but significant, in vivo immunotoxicity in mice, although it did not cause any severe acute inflammatory responses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Three kinds of trinuclear metal string complexes, [Ni3(dpa)4(L1)2]?·?H2O?·?C2H5OH (L1?=?(E)-3-(2-hydroxyl-phenyl)-acrylic acid) (1), [Ni3(dpa)4(L2)2]?·?2C2H5OC2H5 (L2?=?(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (2) and [Ni3(dpa)4(L3)2]?·?3CH2Cl2?·?1.5CH3OH (L3?=?(E)-3-(4-hydroxyl-phenyl)-acrylic acid) (3). (dpa??=?bis(2-pyridyl)amido), have been synthesized. The structures of 1 and 2 have been analyzed by the X-ray single-crystal diffraction showing hydrogen-bonded networks.  相似文献   

17.
Methylarsine oxide and sulfide are more toxic to Candida humicola than arsenite; the sulfide is rapidly metabolized to trimethylarsine (Me3As) and methylarsine (MeAsH2) and the oxide to dimethylarsinic acid [Me2AsO(OH)]. Cell-free extracts of C. humicola also convert the oxide to Me2AsO(OH). The glutathione (RSH) derivative Me2AsSR is metabolized by C. humicola to Me3As and Me2AsH, but some other Me2AsSR′ compounds are unaffected. Studies involving the interaction of the arsenic(III) compounds with natural ecosystems and other micro-organisms such as Scopulariopsis brevicaulis, Straptococcus sanguis, Escherichia coli, and Veillonella alcalescens are described.  相似文献   

18.
Positive and negative cluster ions in methanol have been examined using a direct fast atom bombardment (FAB) probe technique. Positive ion (CH3OH)IIH + clusters with n = 1-28 have been observed and their clusters are the dominant ions in the low-mass region. Cluster-ion reaction products (CH3OH)II(H2O)H+ and (CH3OH)II(CH3OCH3)H+ are observed for a wide range of n and the abundances of these ions decrease with increasing n. The negative ion (CH3OH)II(CH3O)? clusters are also readily observed with n = 0-24 and these form the most-abundant negative ion series at low n. The (CH3OH)II(CH2O)?, (CH3OH)II(HIIO)(CH2O)? and (CH3OH)II(H2OXCH3O)? cluster ions are formed and the abundances of these ions approach those of the (CH3OH)II(CH3O)? ion series at high n. Cluster-ion structures and energetics have been examined using semi-empirical molecular orbital methods.  相似文献   

19.
The mechanisms for the reaction of CH3SSCH3 with OH radical are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) level of theory. Five channels have been obtained and six transition state structures have been located for the title reaction. The initial association between CH3SSCH3 and OH, which forms two low‐energy adducts named as CH3S(OH)SCH3 (IM1 and IM2), is confirmed to be a barrierless process, The S? S bond rupture and H? S bond formation of IM1 lead to the products P1(CH3SH + CH3SO) with a barrier height of 40.00 kJ mol?1. The reaction energy of Path 1 is ?74.04 kJ mol?1. P1 is the most abundant in view of both thermodynamics and dynamics. In addition, IMs can lead to the products P2 (CH3S + CH3SOH), P3 (H2O + CH2S + CH3S), P4 (CH3 + CH3SSOH), and P5 (CH4 + CH3SSO) by addition‐elimination or hydrogen abstraction mechanism. All products are thermodynamically favorable except for P4 (CH3 + CH3SSOH). The reaction energies of Path 2, Path 3, Path 4, and Path 5 are ?28.42, ?46.90, 28.03, and ?89.47 kJ mol?1, respectively. Path 5 is the least favorable channel despite its largest exothermicity (?89.47 kJ mol?1) because this process must undergo two barriers of TS5 (109.0 kJ mol?1) and TS6 (25.49 kJ mol?1). Hopefully, the results presented in this study may provide helpful information on deep insight into the reaction mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

20.
Acute toxicity in mice, and excretion in their urine, of tetramethylarsonium salts which are arsenic compounds found in some marine animals, were examined using synthetic tetramethylarsonium iodide. The oral, intraperitoneal and intravenous LD50 values of tetramethylarsonium iodide [(CH3)4As+I?] were determined to be 890, 175 and 82 mg kg?1, respectively. When sublethal doses of tetramethylarsonium iodide were orally administered to mice, 53–58% of the arsenic administered was recovered in urine after 6 h and 65–81% after 72 h. High-performance liquid chromatography–inductively coupled plasma (HPLC–ICP) and fast atom bombardment mass spectrometric (FAB MS) analyses revealed that a tetramethylarsonium salt was the only arsenic compound excreted in urine. These results suggested that the major part of orally administered tetramethylarsonium iodide was absorbed from the gastrointestinal tract in mice and then rapidly excreted in urine without biotransformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号