首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast GC for the analysis of citrus oils   总被引:2,自引:0,他引:2  
In this investigation, the gas chromatographic (GC) analysis of citrus essential oils is carried out in 3.3 min, with a speed gain of almost 14 times in comparison with traditional GC procedures. The fast method that is developed requires the application of severe experimental conditions (accelerated temperature program rates, high inlet pressures, and split ratios) and, thus, the support of adequate instrumentation. The samples investigated can be considered to be rather complex and, although a slight loss in peak resolution is observed, the overall analytical result is excellent. All data obtained are compared with that of a conventional application on the same matrices. This is done in order to evaluate the effectiveness and advantages of fast GC achieved with narrow bore columns.  相似文献   

2.
Since capillary columns with well immobilized stationary phases are expected to withstand contact with supercritical fluids, we wished to study their amenability to SFC. Simultaneously, we wished to learn how far SFC can be accomplished with the ordianary tools of capillary GC. The study demonstrates that truly supercritical, not just relatively high, pressure is required to ensure the typical effects of SFC. Results obtained with sub-and supercritical pressure are compared and discussed. A comprehenshive study of the parameters permitting SFC with capillary GC equipment showed a clear preference for CO2 as a carrier, FID detection, and oncolumn sampling. While no additional equipment is required, a critical feature is the flow restrictor to be mounted on the end of the column. The production and properties of this restrictor are discussed in detail. It is reasonable to hope that SFC with 0.1 mm id capillary columns can be realized in the pressure range of 100–150 bar, where substances which cannot be eluted from a capillary colum under GC donditions are expected to be analyzed.  相似文献   

3.
In analogy to the focusing effective in capillary GC, performed with temperature programming but also with sectional cooling of the column inlet as in multidimensional capillary GC, peak focusing can easily be attained in SFC by adjustment of the mobile phase pressure as well as the column temperature. This may be of practical use in connection with sampling techniques giving poor, i.e. broad and unsymmetrical, peak shapes. Such disturbances may occur, for example, in time controlled valve sampling over longer switching times. Generally, all other negative influences on peak shape can be suppressed or compensated by trapping within the column inlet. Special trapping devices and “retention gaps” may also be coupled to the column inlet in order to create narrow starting plug widths. Positive pressure (density) and negative temperature programs give rise to peak compression besides the increase of peak capacity of the separation.  相似文献   

4.
Head space GC using a special electropneumatic sampling system works well in combination with glass capillaries. Because a homogenous gas mixture is already present most problems inherent with inlet splitters are thus avoided. In cases where the high vapor pressure of the sample can cause problems with the pressure controlled sampling system, the use of narrow bore glass capillaries provides the necessary inlet pressure. The use of this powerful and convenient analytical tool for water pollution analysis, flavour analysis and the analysis of volatiles in crude oil samples is shown by examples.  相似文献   

5.
Multi–component mixtures of controlled drugs, drug impurities, and adulterants have been analyzed by capillary SFC-FID, packed column SFC-UV, and capillary SFC-MS. Isocratic packed column SFC has been performed with binary and ternary mobile phases using a single syringe pump. The combination of capillary SFC and double focusing MS is described with reference to MS source pressures and the spectra obtained. The use of negative temperature programming in SFC is described.  相似文献   

6.
In this work a fast gas chromatography set‐up with on‐column injection was optimized and evaluated with a model mixture of C8–C28 n‐alkanes. Usual injection volumes when using narrow‐bore (e. g., 0.1 mm i.d.) analytical columns are ca. 0.1 μL. The presented configuration allows introduction of 10–30‐fold larger sample volumes without any distortion of peak shapes. In the set‐up a normal‐bore retention gap (1 m×0.32 mm i. d.) was coupled to a narrow‐bore (4.8 m×0.1 mm i. d.×0.4 μm film thickness) analytical column using a low dead volume column connector. The effects of the experimental conditions such as inlet pressure, sample volume, initial injection temperature, and oven temperature on a peak focusing are discussed. H‐u curves for helium and hydrogen are used to compare their suitability for high speed gas chromatography and to show the dependence of separation efficiency on the carrier gas velocity at high inlet pressures. In the fast gas chromatography system a baseline separation of C10–C28 n‐alkanes was achieved in less than 3 minutes.  相似文献   

7.
A solvent delivery system is described that is designed to increase the efficiency of liquid chromatography-mass spectrometry (LC/MS) analyses. Gradients formed by using two low pressure syringe pumps are stored in a length of narrow bore tubing (gradient loop) mounted on a standard high pressure switching valve. The preformed gradient is pushed through the column by using a high pressure syringe pump. The system is fully automated and can be controlled with either a personal computer or the mass spectrometer data system. Advantages include gradient operation without the use of split flows, pressure programed flow control for rapid sample loading and recycling to initial conditions, and a flow rate range of 0.1–20 μL/min, which is suitable for packed capillary columns 50–500 μm in diameter. The system has been used extensively for rapid molecular weight determinations of intact protein samples, as well as LC/MS and liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures.  相似文献   

8.
An injector designed for automatic direct liquid injection into narrow bore capillary GC columns has been constructed and evaluated. The tip of the syringe needle is aligned with, and positioned close to, the column entrance in a small, pressurized cavity: when the sample is dispensed it is immediately forced into the column by the action of the surrounding carrier gas. A standard autosampler equipped with a standard stainless steel syringe needle was utilized for at-column sample transfer into 100 μm i.d. columns. RSD values for n-alkanes were between 0.1 and 0.3% for relative area counts and approximately 1% for absolute area counts.  相似文献   

9.
A commercially available instrument with an SFC pumping system suitable for wide bore columns (4.6 mm i.d.) has been modified for capillary supercritical fluid chromatography (CSFC) by incorporating a double-stage flow splitter. The first flow splitter was installed in front of the sample injection valve in order to avoid a high solute split ratio. The second splitter was mounted in the column oven so that the injected sample (0.2 μL) would be split to the capillary column. In order to perform pressure programmed elution, a pressure regulating system equipped with a gradient programmer has been used. Flame photometric detection was optimized for the analysis of organosulfur compounds by CSFC. In this study, detection limits were found to be 6–14 ng and the experimentally determined exponent (n value) varied from 1.721 to 1.984 depending on the compounds tested. Sulfur- and phosphorus-containing thermally labile pesticides can be chromatographed and selectively detected by using CSFC/FPD in either sulfur- or phosphorus mode, respectively.  相似文献   

10.
The speed of analysis in capillary gas chromatography can be substantially increased by reduction of the column inner diameter. However, special demands are then posed upon instrumental design. In particular, the sampling system is highly critical because it has to be capable of delivering extremely small injection band widths which must be compatible with the column inside diameter. This study focuses on the evaluation of two potentially suitable sample introduction systems with respect to input band width and detection limits and their compatibility with small bore (≦ 100 μm) columns in capillary gas chromatography. One of them allows liquid on-column injection, based on liquid splitting, of only a few nl onto small bore (≦ 100 ?m) fused silica columns. For gases, input band widths as low as 1 ms are obtained with this system. The other one is part of a miniaturized gas chromatograph with extremely low dead volume interfaces and detector volumes. It allows input band widths for gases of a few ms. Without any preconcentration ppm concentrations are measured in gaseous samples with a 80 ?m thick film capillary column. It will be shown that a further reduction of the minimum detectable amount and analysis time is possible with this equipment.  相似文献   

11.
Two-dimensional high resolution gas chromatography with small bore glass capillary columns is simplified by use of a single 6–port flow switching rotary valve. The band spreading and tailing normally associated with mechanical valves is overcome by matching the internal valve passage diameters to that of the capillary column, and by minimizing unswept volumes in the fittings. selection of inert valve and transfer line materials effectively ellminates undesirable adsorption phenomena. The high thermal stability of the value permmits it to be mounted directly in the GC oven where it can be actuated externally. With slight modifications either packed or capillary pre-columns may be used for initial saperations. Application of enrichment, solvent removal and heart cutting are described.  相似文献   

12.
An analytical method based on a dual capillary gas chromatographic technique combining the advantages of GasPro PLOT and a non polar narrow bore WCOT column was developed for the analysis of air samples containing C2–C9 NMHCs. A refocusing step was not required due to the fast heating rate of the sample preconcentration trap and the resolving power of the PLOT column for C2 and C3 NMHCs. Water had to be removed from the air samples to avoid plugging of the columns if the initial GC oven temperature was below ambient temperature. To dry air samples, a scrubber and a cryogenic technique were employed. The interferences caused by carbon dioxide were reduced by purging the loaded sample preconcentration trap with helium. The dual column system was compared to a method employing a refocusing device and a single narrow bore WCOT column. Both systems provided a high degree of precision. However, the dual column approach was superior to the single column system due to better resolution of low molecular weight components.  相似文献   

13.
Summary When SFC was rediscovered in the early 1980s, it was frequently estimated that a strong driving force to its development would be the ease of devising a simple SFC/MS interface. This was believed to be easily achieved if analytical conditions were limited to capillary SFC columns as a general separation tool, and to the choice of neat CO2 as the unique supercritical fluid. The low flow rate of mobile phase delivered by capillary columns was easy to accommodate by the vacuum equipment of standard mass spectrometers, and the specific physical properties of CO2 made possible solute ionization by different ion-molecule reactions, especially charge exchange ionization. This approach has lived up to all of its promises. The major causes of the observed mismatch are the large variations of the MS source pressure as a result of the CO2 pressure gradient at the SFC column inlet, the low sensitivity of charge exchange ionization at these high MS source pressures, and the inability to handle polar and nonvolatile molecules. Adaptation of LC/MS interfaces, such as the thermospray interface or the particle beam interface, to SFC/MS conditions was a step forward, but these devices have their own limitations. Alternative methods to direct SFC/MS coupling have been investigated recently. They are based on the use of packed columns rather than capillaries, and on solute ionization at atmospheric pressure rather than under a vacuum, by means of either gas-phase corona discharge ionization or liquidphase electrospray ionization. These new developments may revive research into the design of reproducible and sensitive SFC/MS systems where the number of recent studies is still low compared with other chromatography/mass spectrometry coupling studies.See [1] for part III  相似文献   

14.
With the simultaneous development of blank aluminum clad flexible fused silica glass capillary tubing capable of withstanding temperatures up to 500°C, coincident with a series of special high temperature methyl polysiloxane polymers, it was possible to produce for the first time, long lived fused silica capillary columns containing thin films of thermostable stationary phases which could be maintained isothermally at 400425°C and temperature programmed to 425–440°C. The “bleed rate” here for a well conditioned column was 5 picoamperes or less. Under these circumstances, alkanes with carbon numbers in the C-90 to C-100 area were rapidly and efficiently eluted from these columns. By extrapolation here, one can easily detect certain compounds with boiling points in the 750°C range. Since this type of capillary column was found to possess certain favorable properties, it was thought that it will soon replace the packed column and will probably be more popular than the borosilicate capillary column for many high temperature applications. Moreover, evidence has now accumulated which leads us to further believe that the majority of analyses of “high molecular weight” compounds performed by Supercritical Fluid Chromatography (SFC), utilizing very narrow bore fused silica capillary columns at several hundred atmospheres, can be much more simply, much more rapidly, much more economically, and much more efficiently accomplished by gas chromatography utilizing this new generation of high temperature capillary columns.  相似文献   

15.
The use of larger volume injection with on‐column injection and fast GC commercial instrumentation was evaluated with the model mixture of n‐alkanes of a broad range of volatility (C10–C28). The presented configuration allows introduction of 40–80‐fold larger sample volumes without any distortion of peak shapes compared to “usual” fast GC set‐ups using narrow‐bore columns. A normal‐bore retention gap (1–5 m×0.32 mm ID) was coupled to a narrow‐bore (5 m×0.1 mm ID×0.4 μm film thickness) analytical column using a standard press‐fit connector. The connection was tight and reliable, and hence suitable for hydrogen as carrier gas. The effect of pre‐column and analytical column connector, injection volume, pre‐column length, column inlet pressure, and analyte volatility on peak shape, peak broadening, and focusing are discussed. The precision of chromatographic data measurements and peak capacity under optimised temperature programmed conditions for fast separations with large volume injection were found to be very good. The presented fast GC set‐up with on‐column injection extends the applicability of the technique to trace analysis.  相似文献   

16.
The reproducibility of peak areas as a function of the technique used for sample injection was investigated in capillary supercritical fluid chromatography (SFC). An injection technique has been developed to increase the volume of sample introduced into the capillary column. Using a modified time-split injection technique, long injection duration times were successfully applied to achieve lower detection limits. Analytes were effectively focused at the head of the analytical column using a unique pressure trap program. Because this on-column focusing was performed only by pressure and temperature programming, no instrumental modifications were necessary. Up to 1.0 μL of sample solution was injected onto 50 μm i.d. columns using this technique, with no observable peak splitting. Dual detection using ultraviolet (UV) absorption and flame ionization detection (FID) was performed in series, thereby avoiding the necessity of splitting the column effluent. For the compounds investigated (five nitroaromatics and one phthalate ester), the absolute sensitivity of the UV detector was significantly greater than that of the FID.  相似文献   

17.
Retention times of fifty one important chlorobiphenyl congeners have been determined on seven narrow bore GC columns coated with different stationary phases. The retention times of the chlorobiphenyls relative to tetrachloronaphthalene were plotted for different column combinations; the plots generated can be used to choose an optimum column combination for the multidimensional gas chromatographic separation of the chlorobiphenyls.  相似文献   

18.
The coupling of glass capillary supercritical fluid chromatography to a high temperature GC/MS system via a micrometeradjustable glass capillary interface including an integrated pressure restrictor is described. With this coupling device, both complementary capillary chromatographic methods retain their full independence and flexibility. It is shown that in supercritical fluid chromatography glass fulfils all the requirements of a suitable support material. The preparation of narrow bore glass capillary columns (0.06 mm i.d.), coated with chemically bonded and crosslinked fluids with a film thickness of about 0.6 μm, which exploit the merits of OHterminated polysiloxanes as stationary phases is discussed. The application of glass capillary SFC is demonstrated and compared with examples given in the literature.  相似文献   

19.
Summary A splitless Curie point pyrolysis inlet system for capillary columns has been built using conventional packed column apparatus. This has enabled the adsorption wire analysis system, for the rapid collection and direct GC analysis of vapours, to be used with capillary columns. Use of the technique for detecting traces of hydrocarbon fuels in arson investigation is described, as are problems occurring in its use.  相似文献   

20.
The need for faster and more efficient separations of complex mixtures of organic compounds by gas chromatography has led to the development of small inner diameter open tubular columns. Owing to their decreased plate height, extremely narrow peaks are obtained. When differently sized columns with equal plate numbers are compared, injection of a fixed amount of a solute will give the highest detector signals for the smallest bore columns. When P is defined as the ratio of the column inlet and outlet pressures, it can be seen from theory that under normalized chromatographic conditions the minimum detectable amount (Qº) for a mass flow sensitive detector increases proportionally to the square of the column diameter for P = 1. In the situation of greater interest in the practice of open tubular gas chromatography where P is large, a linear relationship is derived between Qº and the column diameter. It is a widespread misunderstanding, however, that narrow bore capillary columns should be used for this reason in trace analysis. If a fixed relative contribution of the injection band width to the overall peak variance is allowed, a decreased plate height drastically restricts the maximum sample volume to be injected. It is shown that the minimum analyte concentration in the injected sample (Cº) is inversely proportional to the column inner diameter when a mass flow sensitive detector is used. For actual concentrations less than Cº, sample preconcentration is required. The effect of peak resolution and selectivity of the stationary phase in relation to Cº and Qº will be discussed as well. The validity of the given theory is experimentally investigated. Minimum analyte concentrations and minimum detectable amounts are compared using columns with different inner diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号