首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L1) and 6-((anthracen-9-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2]2+, the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1]2+, the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.  相似文献   

2.
The Zn(2+) coordination chemistry and luminescent behavior of two ligands constituted by an open 1,4,7-triazaheptane chain functionalized at both ends with 2-picolyl units and either a methylnaphthyl (L1) or a dansyl (L2) fluorescent unit attached to the central amino nitrogen are reported. The fluorescent properties of the ZnL1(2+) and ZnL2(2+) complexes are then exploited toward detection of anions. L1 in the pH range of study has four protonation constants. The fluorescence emission from the naphthalene fluorophore is quenched either at low or at high pH values leading to an emissive pH window centered around pH = 5. In contrast, in L2 the fluorescence emission from the dansyl unit occurs only at basic pH values. In the case of L1, a red-shifted band appearing in the visible region was assigned to an exciplex emission involving the naphthalene and the tertiary amine of the polyamine chain. L1 forms Zn(2+) mononuclear complexes of ZnH(p)L1((p+2)+) stoichiometry with p = 1, 0, -1. Formation of the ZnL1(2+)species produces a strong enhancement of the L1 luminescence leading to an extended emissive pH window from pH = 5 to pH = 9. Addition of several anions to this last complex leads to a partial quenching effect. On the contrary, the fluorescence emission of L2 is partially quenched upon complexation with Zn(2+) in the same pH window (5 < pH < 9). The lower stability of ZnL2(2+) with respect to ZnL1(2+) suggests a lack of involvement of the sulfonamide group in the first coordination sphere. However, there is spectral evidence for an interesting photoinduced binding of the sulfonamide nitrogen to Zn(2+). While addition of diphosphate, triphosphate, citrate, and D,L-isocitrate to a solution of ZnL2(2+) restores the fluorescence emission of the system (lambda max ca. 600 nm), addition of phosphate, chloride, iodide, and cyanurate do not produce any significant change in fluorescence. Moreover, this system would permit one to differentiate diphosphate and triphosphate over citrate and d, l-isocitrate because the fluorescence enhancement observed upon addition of the first anions is much sharper. The ZnL2(2+) complex and its mixed complexes with diphosphate, triphosphate, citrate, and D,L-isocitrate have been characterized by (1)H, (31)P NMR, and Electrospray Mass Spectrometry.  相似文献   

3.
The ligand L(1), which contains a chelating 2-(2-pyridyl)benzimidazole (PB) unit with a pendant anthacenyl group An connected via a methylene spacer, (L(1) = PB-An), was used to prepare the 8-coordinate lanthanide(III) complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Gd, Er, Yb) which have been structurally characterised and all have a square antiprismatic N(2)O(6) coordination geometry. Whereas free L(1) displays typical anthracene-based fluorescence, this fluorescence is completely quenched in its complexes. The An group in L(1) acts as an antenna unit: in the complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Er, Yb) selective excitation of the anthracene results in sensitised near-infrared luminescence from the lanthanide centres with concomitant quenching of An fluorescence. Surprisingly, the anthracene fluorescence is also quenched even in the Gd(III) complex and in its Zn(II) adduct in which quenching via energy transfer to the metal centre is not possible. It is proposed that the quenching of anthracene fluorescence in coordinated L(1) arises due to intra-ligand photoinduced electron-transfer from the excited anthracene chromophore (1)An* to the coordinated PB unit generating a short-lived charge-separated state [An(.+)-PB(.-)] which collapses by back electron-transfer to give (3)An*. This electron-transfer step is only possible upon coordination of L(1) to the metal centre, which strongly increases the electron acceptor capability of the PB unit, such that (1)An* --> PB PET is endoergonic in free L(1) but exergonic in its complexes. Thus, rather than a conventional set of steps ((1)An* -->(3)An* --> Ln), the sensitization mechanism now includes (1)An* --> PB photoinduced electron transfer to generate charge-separated [An(.+)-PB(.-)], then back electron-transfer to generate (3)An* which finally sensitises the Ln(III) centre via energy transfer. The presence of (3)An* in L(1) and its complexes is confirmed by nanosecond transient absorption studies, which have also shown that the (3)An* lifetime in the Nd(III) complex matches the rise time of Nd-centred near-infrared emission, confirming that the final step of the sequence is (3)An* --> Ln(III) energy-transfer.  相似文献   

4.
We have found the first well-characterized coordination of guanidine with Zn(2+) in a 1:1 complex (ZnL(1)) with cyclen (= 1,4,7,10-tetraazacyclododecane) functionalized with guanidinylethyl group (L(1) = (2-guanidinyl)ethyl-cyclen). The X-ray structure analysis of the 1:1 complex crystallized at pH 7.5 revealed an apical coordination of the pendant guanidinyl group to Zn(2+) ion in ZnL(1). By potentiometrtic pH titration, initial formation of a 1:1 Zn(L(1).H(+)) complex was indicated, where only the cyclen N's bind to Zn(2+) with the complexation constant, log K(s) (K(s) = [Zn(L(1).H(+))]/[Zn(2+)][L(1).H(+)] (M(-1))), being 12.4 +/- 0.1. Facile deprotonation of the guanidinium pendant in the Zn(L(1).H(+)) occurred with a pK(a) value of 5.9 +/- 0.1 at 25 degrees C with I = 0.1 (NaNO(3)) to yield the guanidine-coordinating complex ZnL(1). 4-Nitrophenyl phosphate dianion (NPP(2-)) interacted with ZnL(1) through a new Zn(2+)-phosphate coordination, as indicated by (31)P NMR titration and potentiometric pH titration. An apparent complexation constant for this new species, log K(app)(Zn(L(1).H(+))-NPP), was 4.0 +/- 0.1, which is larger than the log K(app)(ZnL(2)-NPP) value of 3.1 for the 1:1 complex of Zn(2+)-cyclen (ZnL(2)) with NPP at the common pH 5.6. The interaction of ZnL(1) with a phosphate dianion was proven by the X-ray crystal structure analysis of the 1:1 ZnL(1)-PP(2-) complex (PP(2-) is a dianion of phenyl phosphate) obtained from an aqueous solution at pH 6.5. At higher pH, the pendant guanidinium cation is deprotonated to displace the phosphate to yield the Zn(2+)-guanidine bond.  相似文献   

5.
Bichromophoric compound 3 beta-((2-(methoxycarbonyl)bicyclo[2.2.1]hepta-2,5-diene-3-yl)carboxy)androst-5-en-17 beta-yl-[2-(N-carbazolyl)acetate] (NBD-S-CZ) was synthesized and its photochemistry was examined by fluorescence quenching, flash photolysis, and chemically induced dynamic nuclear polarization (CIDNP) methods. Fluorescence quenching measurements show that intramolecular electron transfer from the singlet excited state of the carbazole to the norbornadiene group in NBD-S-CZ occurs with an efficiency (Phi SET) of about 14 % and rate constant (kSET) of about 1.6 x 10(7) s-1. Phosphorescence and flash photolysis studies reveal that intramolecular triplet energy transfer and electron transfer from the triplet carbazole to the norbornadiene group proceed with an efficiency (TET + TT) of about 52 % and rate constant (kTET + kTT) of about 3.3 x 10(5) s-1. Upon selective excitation of the carbazole chromophore, nuclear polarization is detected for protons of the norbornadiene group (emission) and its quadricyclane isomer (enhanced absorption); this suggests that the isomerization of the norbornadiene group to the quadricyclane proceeds by a radical-ion pair recombination mechanism in addition to intramolecular triplet sensitization. The long-distance intramolecular triplet energy transfer and electron transfers starting both from the singlet and triplet excited states are proposed to proceed by a through-bond mechanism.  相似文献   

6.
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.  相似文献   

7.
Protonation and Zn(II), Cd(II) and Hg(II) coordination with the ligand 5-aminoethyl-2,5,8-triaza-[9]-10,23-phenanthrolinophane (L2), which contains an aminoethyl pendant attached to a phenanthroline-containing macrocycle, have been investigated by means of potentiometric, 1H NMR and spectrofluorimetric titrations in aqueous solutions. The coordination properties of L2 are compared with those of the ligand 2,5,8-triaza-[9]-10,23-phenanthrolinophane (L1). Ligand protonation occurs on the aliphatic amine groups and does not involve directly the heteroaromatic nitrogens. The fluorescence emission properties of L2 are controlled by the protonation state of the benzylic nitrogens: when not protonated, their lone pairs are available for an electron transfer process to the excited phenanthroline, quenching the emission. As a consequence, the ligand is emissive only in the highly charged [H3L2]3+ and [H4L2]4+ species, where the benzylic nitrogens are protonated. Considering metal complexation, both [ML1]2+ and [ML2]2+ complexes (M = Zn(II) and Cd(II)) are not emissive, since the benzylic nitrogens are weakly involved in metal coordination, and, once again, they are available for quenching the fluorescence emission. Protonation of the L2 complexes to give [MHL2]3+ species, instead, leads to a recovery of the fluorescence emission. Complex protonation, in fact, occurs on the ethylamino group and gives a marked change of the coordination sphere of the metals, with a stronger involvement in metal coordination of the benzylic nitrogens; consequently, their lone pairs are not available for the process of emission quenching.  相似文献   

8.
Abstract

Besides being of interest in photochemistry, photoinduced electron transfer (PET) is a process largely used in the design of fluorescent ion sensing molecules. One of the simplest systems is based on fluorescent aromatic groups linked to amino groups and proposed as possible fluorescent transition metal ion chemosensor [1]. In this case, the fluorescence of the fluorophore “ligths on” when the amino group is complexed. On the other hand, in the absence of metal ions, the fluorescence is quenched by a PET originating from the nitrogen lone electron pairs [2]. We prepared a new fluorescent chemosensor, abbreviated as Ant-NH-O-O-NH-Ant (shown in Fig. 1) in which the intramolecular PET is expected to be efficient. The chemosensor consists of a metal-binding dioxodiamino unit linked to two light-emitting anthracene fragments. This type of supramolecules when irradiated in methanol solution (conc. 1.89—10?5 M.) at 368 nm displays a characteristic fluorescence spectrum for anthracene group with the most intensive band at 415 nm [Fig. 2(a)]. The emission is slightly enhanced upon coordination of such metal ions as Ni2+ and Zn2+ by the ligand fragment of the Ant-NH-O-O-NH-Ant molecule [Fig. 2(b) and (d)]. However, much higher intensity of emission is observed in the case of Cu2+ complex [see Fig 2(c)]. The fluorescence enhancement is presumably due to suppression of photoinduced fluorophore-to-metal electron-transfer mechanism.  相似文献   

9.
The condensation of 2-pyridinecarboxaldehyde N-oxide and triethylenetetramine yields a product with two imidazolidine rings, as proven by a solid-state X-ray structure analysis as well as by NMR solution spectra. This ligand, L1, undergoes a ring-opening reaction on complex formation with Cu(II), yielding [CuL2]2+ where L2 functions as a pentadentate ligand, containing only one imidazolidine ring. On complexation with Zn(II) and Fe(III), both rings are opened and the complexes [ZnL3]2+ and [FeL3]3+ with a hexadentate L3 ligand are formed. The recrystallization of [ZnL3]2+ from DMSO solution results in the complex [ZnL1(DMSO)2]2+ in which L1 behaves as a tetradentate ligand. Thus L1, L2, and L3 are structural isomers with two, one, or no imidazolidine rings, as confirmed by X-ray structure analyses. The intramolecular ring formation is the result of the nucleophilic addition of the N(amino) group to the electrophilic sp2-hybridized -HC delta+=N site. Owing to the absence of the chelate effect on the sp3-hybridized carbon atom belonging to the imidazolidine ring, the ring opening is facilitated and readily observed upon complex formation with Cu(II), Zn(II), and Fe(III).  相似文献   

10.
The design, synthesis and photophysical evaluation of two new chemosensors 1 and 2 is described for the selective detection of Cd(II) in water at pH 7.4. Both are based on the use of aromatic iminodiacetate receptors that connected to an anthracene fluorophore by covalent methyl spacers. These are highly water-soluble sensors where the fluorescence is ‘switched off’ between pH 3-11, due to photoinduced electron transfer (PET) quenching of the anthracene excited state by the receptor. Upon protonation of the receptor, the emission was however, ‘switched on’. From these changes pKas of 1.8 and 2.5 were determined for 1 and 2 respectively. Both showed good selectivity for Cd(II) over competitive ions such as group II and Zn(II), Cu(II), Co(II). For 1, having a single receptor, only a weak monomer anthracene emission was observed for the free sensor at pH 7.4 (HEPES buffer, 135 mM NaCl). Upon Zn(II) titration, a broad red shifted emission occurred, centred at 468 nm. In the presence of Cd(II), a similar red shifted emission was also observed, however, this time centred at 506 nm. In contrast to these results, the fluorescence of 2 in the presence of Zn(II) gave rise to typical monomeric anthracene emission, due to suppression of PET, that is, the anthracene emission was ‘switched on’. Nevertheless, in the presence of Cd(II) a broad emission centred at 500 nm was observed, similar to that seen for 1. These ion induced long wavelength emission bands were assigned to the formation of charge-transfer complexes (exciplexes) between the anthracene moieties and the ion-receptor complexes. Importantly, for both 1 and 2, a selective detection of Cd(II) was possible, even in the presence of Zn(II).  相似文献   

11.
Kubo K  Sakurai T  Mori A 《Talanta》1999,50(1):73-77
9,10-Bis[bis(beta-hydroxyethyl)aminomethyl]anthracene (1) showed weak emission, suggesting that photoinduced electron transfer (PET) from amine group to excited anthracene occur. The PET fluoroionophore (1) was found to display unique photophysical properties in the presence of the guest metal cations in H(2)OCH(3)OH (1:1, v/v). Complexation of 1 with guest metal cations increased the fluorescence intensity.  相似文献   

12.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

13.
Three new fluorescent devices for protons and metal ions have been synthesized and characterized, and their photophysical properties have been explored; these are the macrocycles 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) and 7-(10-methyl-9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L2) and the bis macrocycle 7,7'-[9,10-anthracenediylbis(methylene)]bis-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L3). All these systems have a pyridil-thioether-containing macrocycles as a binding site and an anthracene moiety as a signaling agent. The coordination properties of these ligands toward Cu(II), Co(II), Ni(II), Zn(II), and Pd(II) have been studied in solution and in the solid state. The addition of these metal ions to dichloromethane solutions of L1, L2, and L3 produce strong changes in the absorption and emission spectra of these ligands. The stoichiometry of the species, formed at 298 K, have been determined from absorption and fluorescence titrations. The Co(II) and Cu(II) complexes of L1 have been studied by EPR spectroscopy. This last complex and its free ligand have also been characterized by X-ray crystallography.  相似文献   

14.
Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer: ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.  相似文献   

15.
Supramolecular calix[4]arene conjugate (L) has been developed as a sensitive and selective sensor for Zn(2+) in HEPES buffer among the 12 metal ion by using fluorescence, absorption and ESI MS and also by visual fluorescent color. The structural, electronic, and emission properties of the calix[4]arene conjugates L and its zinc complex, [ZnL], have been demonstrated using ab initio density functional theory (DFT) combined with time-dependent density functional theory (TDDFT) calculations. The TDDFT calculations reveal the switch on fluorescence behavior of L is mainly due to the utilization of the lone pair of electrons on imine moiety by the Zn(2+). The resultant fluorescent complex, [ZnL], has been used as a secondary sensing chemo-ensemble for the detection of -SH containing molecules by removing Zn(2+) from [ZnL] and forming {Cys/DTT·Zn} adducts as equivalent to those present in metallothioneins. The displacement followed by the release of the coordinated zinc from its Cys/DTT complex by heavy metal ion (viz. Cd(2+) and Hg(2+)), as in the metal detoxification process or by ROS (such as H(2)O(2)) as in the oxidative stress, has been well demonstrated using the conjugate L through the fluorescence intensity retrieval wherein the fluorescence intensity is the same as that observed with [ZnL], which in turn mimics the zinc sensing element (MTF) in biology.  相似文献   

16.
Four new fluoroionophores possessing four ligating sites (2S+2N) and an essential hydrophobic environment, as prevailing in the plastocyanin and rusticyanin proteins, have been synthesized. In these PET fluoroionophores, the position of fluorophore anthracene moiety effectively modulates the Cu2+ induced emission properties (quenching vs enhancement) of the fluorophore. The addition of Cu2+ to solution of receptor with anthracene moiety in its center caused quenching in emission intensity through photoinduced fluorophore-to-metal electron transfer mechanism and in cases where anthracene is present at terminus nitrogen, the emission intensities increased by nearly 1000% due to inhibition of the photoinduced electron transfer from receptor-to-fluorophore in the presence of Cu2+ ions. The hydrophobic environment created by various aromatic rings clearly manifested the stability of fluorescence of these molecules above pH 2.0 and their Cu2+ complexes above pH 4. The application of such fluoroionophores has been elaborated for building OR and AND logic gates.  相似文献   

17.
The coordination chemistry of the N-aminopropyl pendant arm derivatives (L1c-4c) of the mixed donor macrocyclic ligands [12]aneNS2O, [12]aneNS3, [12]aneN2SO, and [15]aneNS2O2(L1a-4a) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) in aqueous solution has been investigated. The protonation and stability constants with the aforementioned metal ions were determined potentiometrically and compared, where possible, with those of the unfunctionalised macrocycles. The measured values show that Hg(II) and Cu(II) in water have the highest affinity for all ligands considered, with the N-aminopropyl pendant arm weakly coordinating the metal centres. Crystals suitable for X-ray diffraction analysis were grown for the perchlorate salt (H2L1c)(ClO4)2.dmf, and for the 1 : 1 complexes [Cd(L3a)(NO3)2](1), [Cu(L4a)dmf](ClO4)2(2), [Zn(L1c)(ClO4)]ClO4(3), [Cd(L1c)(NO3)]NO3(4), and [Hg(L2c)](ClO4)2(5). Their structures show the macrocyclic ligands adopting a folded conformation, which for the 12-membered systems can be either [2424] or [3333] depending on the nature of the metal ion. L1c-4c were also functionalised at the primary amino pendant group with different fluorogenic subunits. In particular the N-dansylamidopropyl (Lnd, n= 1-4), and the N-(9-anthracenylmethyl)aminopropyl (Lne, n= 1, 2, 4, ) pendant arm derivatives of L1a-4a were synthesised and their optical responses to the above mentioned metal ions were investigated in MeCN/H2O (4 : 1 v/v) solutions.  相似文献   

18.
A series of 3d-4f heterobimetallic phenylene-bridged Schiff base complexes of the general formula [Zn(mu-L1)Ln(NO3)3(S)n] [Ln = La (1), Nd (2), Gd (3), Er (4), Yb (5); S = H(2)O, EtOH; n = 1, 2; H2L1 = N,N'-bis(3-methoxysalicylidene)phenylene-1,2-diamine] and [Zn(mu-L2)Ln(NO3)3(H2O)n] [Ln = La (6), Nd (7), Gd (8), Er (9), Yb (10); n = 1, 2; H(2)L(2) = N,N'-bis(3-methoxy-5-p-tolylsalicylidene)phenylene-1,2-diamine] were synthesized and characterized. Complexes 1, 2, 4, and 7 were structurally characterized by X-ray crystallography. At room temperature in CH(3)CN, both neodymium(III) (2 and 7) and ytterbium(III) (5 and 10) complexes also exhibited, in addition to the ligand-centered emission in the UV-vis region, their lanthanide(III) ion emission in the near-infrared (NIR) region. The photophysical properties of the zinc(II) phenylene-bridged complexes (ZnL1 and ZnL2) were measured and compared with those of the corresponding zinc(II) ethylene-bridged complexes (ZnL3 and ZnL4). Our results revealed that, at 77 K, both ligand-centered triplet (3LC) and singlet (1LC) states existed for the ethylene-bridged complexes (ZnL3 and ZnL4), whereas only the (1)LC state was detected for the phenylene-bridged complexes (ZnL1 and ZnL2). NIR sensitization studies of [Zn(mu-L')Nd(NO3)3(H2O)n] (L' = L1-L4) complexes further showed that Nd3+ sensitization took place via the 3LC and 1LC states when the spacer between the imine groups of the Schiff base ligand was an ethylene and a phenylene unit, respectively. Ab initio calculations show that the observed differences can be attributed to the difference in the molecular vibrational properties and electron densities of the electronic states between the ethylene- and phenylene-bridged complexes.  相似文献   

19.
Two fluorescent ligands, N-(2-(5-cyanopyridyl))cyclen (L5) and N-(2-pyridyl)cyclen (L6) (cyclen = 1,4,7,10-tetraazacyclododecane), were designed and synthesized to control twisted intramolecular charge transfer (TICT) by metal chelation in aqueous solution. By complexation with Zn(2+), L6 exhibited TICT emissions at 430 nm (excitation at 270 nm) in 10 mM HEPES (pH 7.0) with I = 0.1 (NaNO(3)) at 25 degrees C due to the perpendicular conformation of a pyridine ring with respect to a dialkylamino group, which was fixed by Zn(2+)-N(pyridine) coordination, as proven by potentiometric pH, UV, and fluorescence titrations and X-ray crystal structure analysis. We further describe that the 1:1 complexation of ZnL6 with guests such as succinimide, phosphates, thiolates, and dicarboxylates, which compete with a nitrogen in the pyridine ring for Zn(2+) in ZnL6, induces considerable emission shift from TICT emissions (at 430 nm) to locally excited emissions (at ca. 350 nm) in neutral aqueous solution at 25 degrees C.  相似文献   

20.
合成并通过单晶衍射表征了一个配合物[ZnL(NO3)2].CH3CN(1,L=N-(1-萘基)-2-(8-喹啉氧基)乙酰胺)。在配合物1中,金属锌离子采取扭曲的四方锥的配位构型。来自配体L的1个氧原子,2个氮原子及来自2个硝酸根的2个氧原子和中心锌离子配位。配合物通过分子间的N-H…O氢键作用构筑成沿a轴的链状结构。乙腈溶液中配合物在414.8 nm处有强荧光发射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号