首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rubidium and cesium form stable metal-rich oxides (suboxides) which have been investigated by thermal and structural analysis. The compounds Rb9O2, Rb6O (? Rb9O2Rb3), Cs11O3, Cs4O (? Cs11O3Cs10), Cs11O3Rb, and Cs11O3Rb7 contain the characteristic ionic clusters Rb9O2 and Cs11O3. A simple model for the chemical bonding in alkali metal suboxides is described and proved by measuring the electrical properties and optical reflectivities as well as photoelectron spectra of these compounds. It is found that cesium suboxides play an important role in widely used photocathodes and image converters of type S1. The IR sensitivity of these devices is explained on the basis of surface plasmon-enhanced photoemission.  相似文献   

2.
The vertical ionization potentials of 7 cesium and 86 oxidized cesium clusters were determined using the technique of photoionization mass spectrometry. The spectra were obtained using a tunablecw dye laser for clusters in a mass range 1 to 2024 amu. The vertical ionization potentials (IP) are presented as a function of size and composition. The ionization energies of cesium clusters, Csn, decrease with cluster size. Unusually low IP were observed for the enneamer, Cs9, and for the cesium monoxide Cs11 O. With increasing oxidation of the cesium metal clusters the IP decreases (suboxides) reaches a minimum at Cs(Cs2O)n and then increases (superoxides).  相似文献   

3.
The “Complex Metal” Cs11O3 Preparation, crystal growth, and structure investigation of the stoichiometric compound Cs11O3 are described. Cs11O3 consists of discrete clusters of the same stoichiometry. According to the interatomic distances bonds within the clusters are ionic whereas bonds between different clusters are metallic. The metallic conductivity as well as the temperature independent paramagnetism of Cs11O3 corresponds to this bonding sceme.  相似文献   

4.
On Alkali Metal Suboxides. VII. The Caesium Oxide with the Highest Metal Content, CS7O Preparation, crystal growth and X-ray investigations with modified Guinier technique and single crystal diffractometer between 0° and ?170°C are reported for the compound Cs7O. A simple nitrogen evaporator is described. — The structure of Cs7O corresponds to the formula [Cs11O3]Cs10. Single crystal investigations at ?20 and ?l70°C lead to nearly identical atomic distances within the “ionic cluster” Cs11O3, whereas distances between these clusters and within the oxygen free parts of the structure vary as in metallic caesium.  相似文献   

5.
The incorporation of Cs atoms in silicon was investigated by dynamic computer simulations using the Monte‐Carlo code T‐DYN that takes into account the gradual change of the target composition due to the Cs irradiation. The implantation of Cs atoms at normal incidence was studied for four energies (0.2, 0.5, 1, and 3 keV) and three different Cs surface‐binding energies UCs (0.4, 0.8, and 2.4 eV). The total implantation fluences were 2 × 1017 Cs cm?2 for 0.2 keV, 1.5 × 1017 Cs cm?2 for 0.5 keV, and 1 × 1017 Cs cm?2 for 1 and 3 keV. At these values, a stationary state has been reached. The steady‐state Cs‐surface concentrations exhibit a pronounced dependence both on impact energy and UCs, varying between ~1 (at 0.2 keV and UCs = 2.4 eV) and ~0.13 (3 keV and UCs = 0.4 eV). Under equilibrium, the partial sputtering yield of Si, YSi, experiences little influence of UCs, but varies with the Cs energy: at UCs = 0.8 eV from 0.09 to 1.0 Si atoms/Cs projectile. For all irradiation conditions a strongly preferential sputtering of Cs atoms as compared to Si atoms is found, increasing from 1.8 (at 3 keV and UCs = 2.4 eV) to 13.3 (at 0.2 keV and UCs = 0.4 eV). Preferential sputtering of Cs increases with decreasing irradiation energy and decreasing UCs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The accessibility of lithium cations in microporous vanadosilicate VSH-2Cs of composition Cs2(VO)(Si6O14) ⋅ 3H2O was investigated by Single Crystal X-ray Diffraction, Attenuated Total Reflection Fourier Transformed Infrared Spectroscopy and Density Functional Theory calculations. The topological symmetry of VSH-2Cs is described in space group Cmca. After Li-ion exchange, the structure of VSH-2Li adopted monoclinic symmetry (space group C2/c) with a=17.011(2) Å, b=8.8533(11) Å, c=12.4934(16) Å, β=91.677(4)°, V=1880.7(4) Å3. The strong interactions between Li ions and oxygen-framework atoms drive the main deformation mechanism, which is based on cooperative rotation of SiO4 and VO5 units around their oxygen atoms that behave as hinges. Exchange of Cs+ by Li+ is incomplete and accompanied by the formation of protonated species to counterbalance the electrostatic charge. The incorporation of protons is mediated by the presence of water dimers in the structural channels. H2O molecules in VSH-2Li account not only as “space-fillers” after the removal of large Cs ions but also mediate proton transfer to compensate the negative charge of the host vanadosilicate framework.  相似文献   

7.
The Keggin-type cesium salt of transition metal-substituted phosphomolybdates, Cs5[PCo(H2O)Mo11O39]?·?6H2O (1) and Cs5[PMn(H2O)Mo11O39]?·?6H2O (2), were synthesized from commercially available H3PMo12O40. The compounds were characterized by thermal, structural, and spectroscopic techniques. X-ray structural analysis reveals that, in these isostructural disordered compounds, the transition metal (Co/Mn) and Mo atoms are distributed over 12 positions. The presence of Co/Mn atoms was confirmed by powder XRD, FT-IR, DR-UV-Vis, ESR, and 31P NMR studies.  相似文献   

8.
Photoabsorption spectra are reported for Cs n + and C60Csn + + clusters for n=40, 60, 120 and 310. The spectra were obtained by heating the mass selected clusters in a beam by means of photoabsorption until they evaporated metal atoms. The resulting mass loss was observed in a time-of-flight mass spectometer. The plasmon-like resonance in pure Cs clusters shifts to lower energies with decreasing cluster size. The collective electronic excitations in clusters containing C60 are split in energy as would be expected for fullerene molecules coated with layers of metal.  相似文献   

9.
The Raman and IR-absorption spectra of the Cs2Te4O12 lattice are first recorded and interpreted. Extraordinary features observed in the structure and Raman spectra of Cs2Te4O12 are analyzed by using ab initio and lattice-dynamical model calculations. This compound is specified as a caesium-tellurium tellurate Cs2TeIV(TeVIO4)3 in which TeIV atoms transfer their 5p electrons to [TeVIO4]36− tellurate anions, thus fulfilling (jointly with Cs atoms) the role of cations. The TeVI-O-TeVI bridge vibration Raman intensity is found abnormally weak, which is reproduced by model treatment including the Cs+ ion polarizability properties in consideration.  相似文献   

10.
First X-ray Crystallographic Characterized Cs+ ‘‘in cavity”︁”︁ Complex of a Twenty-one Membered Coronand: (Maleonitrile-Dithio[21]crown-7)caesium Hexachloroantimonate A new maleonitrile-crown dithioether, the maleonitrile-dithio[21]crown-7 (mn–21 S2O5), was synthesized by high dilution cyclization of (Z)-1,2-disodium-1,2-dicyanoethene-1,2-dithiolate ( 1 ) with 1,17-dichloro-3,6,9,12,15-pentaoxaheptadecane ( 2 ) in ethanol/water mixtures. Mn–21 S2O5 forms with CsSbCl6 in MeCN/MeNO2 a 1 : 1 complex [Cs(mn–21 S2O5)]SbCl6. X-ray crystal analysis revealed that the complex cation [Cs(mn–21 S2O5)]+ is an ‘‘in cavity”︁”︁ complex in which the Cs+ ion is coordinated by seven donor atoms (five O and two S atoms). This is the first X-ray crystallographic evidence of Cs+ coordination by seven donors in a hole of a twenty-one membered coronand.  相似文献   

11.
Cs2Ba(O3)4 · 2 NH3, the First Ionic Alkaline Earth Metal Ozonide Cs2Ba(O3)4 · 2 NH3 is the first ionic ozonide containing an alkaline earth metal cation. Its synthesis has been achieved via partial cation exchange of CsO3 dissolved in liquid ammonia. According to a single crystal X‐ray structure determination (Pnnm; a = 6.312(2) Å, b = 12.975(3) Å, c = 8.045(2) Å; Z = 2; R1 = 4.6%; 848 independent reflections) ozonide anions, cesium cations and ammonia molecules form a CsCl‐type arrangement, where Cs+ and NH3 occupy one half of the cation sites, each. Ba2+ is coordinated by four ozonide groups and two ammonia molecules. Because of a short hydrogen bond to one of the terminal oxygen atoms, the respective O–O‐distance in the ozonide ion is longer than the other. The shortest intermolecular O–O‐distance ever observed in ionic ozonides has been found in this compound, which can be taken as a first clue for the radical ozonide anion to dimerize like the isoelectronic SO2 does.  相似文献   

12.
13.
Conclusions We have studied the temperature dependence of the NQR parameters of123Sb and81Br in the range 77–360 K for the complexes of MSbBrF3 (M=Na, Cs, NH4) and Cs3Sb2Br9. We have established the temperature regions for which piezoelectric properties appear in the crystal hydrate NaSbBrF3.H2O, and in the compounds MSbBrF3 (M=Na, NH4) and Cs3Sb2Br9 anomalous changes appear in the dependences of the quadrupole coupling constant, the asymmetry parameter of the electric field gradient for the antimony atoms and the resonance frequency of the bromine atoms.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1501–1504, July, 1987.  相似文献   

14.
Polysulfonylamines. CLXIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 12. The Orthorhombic Double Salt Na2Cs2[(CH3SO2)2N]4·3H2O: A Three‐Dimensional Coordination Polymer Built up from Cesium‐Anion‐Water Layers and Intercalated Sodium Ions The packing arrangement of the three‐dimensional coordination polymer Na2Cs2[(MeSO2)2N]4·3H2O (orthorhombic, space group Pna21, Z′ = 1) is in some respects similar to that of the previously reported sodium‐potassium double salt Na2K2[(MeSO2)2N]4·4H2O (tetragonal, P43212, Z′ = 1/2). In the present structure, four multidentately coordinating independent anions, three independent aquo ligands and two types of cesium cation form monolayer substructures that are associated in pairs to form double layers via a Cs(1)—H2O—Cs(2) motif, thus conferring upon each Cs+ an irregular O8N2 environment drawn from two N, O‐chelating anions, two O, O‐chelating anions and two water molecules. Half of the sodium ions occupy pseudo‐inversion centres situated between the double layers and have an octahedral O6 coordination built up from four anions and two water molecules, whereas the remaining Na+ are intercalated within the double layers in a square‐pyramidal and pseudo‐C2 symmetric O5 environment provided by four anions and the water molecule of the Cs—H2O—Cs motif. The net effect is that each of the four independent anions forms bonds to two Cs+ and two Na+, two independent water molecules are involved in Cs—H2O—Na motifs, and the third water molecule acts as a μ3‐bridging ligand for two Cs+ and one Na+. The crystal cohesion is reinforced by a three‐dimensional network of conventional O—H···O=S and weak C—H···O=S/N hydrogen bonds.  相似文献   

15.
Polysulfonylamines. CLXV. Crystal Structures of Metal Di(methanesulfonyl)amides. 14. Cs3Ag[(MeSO2)2N]4 and CsAg[(MeSO2)2N]2: A Three‐Dimensional and a Layered Coordination Polymer Containing Bis(dimesylamido‐N)argentate Building Blocks Serendipitous formation pathways and low‐temperature X‐ray structures are reported for the coordination compounds Cs3A2[AgA2] ( 1 ) and Cs[AgA2] ( 2 ), where A represents the pentadentate dimesylamide ligand (MeSO2)2N. Both phases (monoclinic, space group C2/c, Z′ = 1/2) contain inversion‐symmetric bis(dimesylamido‐N)argentate units displaying exactly linear N—Ag—N cores and short, predominantly covalent Ag—N bonds [ 1 : 213.5(2), 2 : 213.35(12) pm]; in each case, the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The three‐dimensional coordination polymer 1 is built up from alternating layer substructures [{Cs(1)}{A}4/2] with Cs(1) lying on twofold rotation axes and [{Cs(2)}2{AgA2}4/4]+ with Cs(2) occupying general positions. Within the substructural layers, both types of cesium cation have approximately planar O4 environments, whereas the final coordination spheres including interlayer bonds are extended to O6 for Cs(1) and to O8N for Cs(2). Compound 2 , in contrast, forms a genuine layer structure. The layers are constructed from Cs+ chains located on twofold rotation axes, alternating with [AgA2] stacks reinforced by Ag···O secondary interactions and weak C—H···O hydrogen bonds; Cs+ is embedded in an O8 environment. Both structures are pervaded by a three‐dimensional C—H···O network.  相似文献   

16.
The double phosphate Cs3In3(PO4)4, prepared by a flux technique, features a fragment of composition In3O16 formed by three corner‐sharing InO6 polyhedra. The central In atom resides on a twofold rotation axis, while the other two In atoms are on general positions. The O atoms in this fragment also belong to PO4 tetrahedra, which link the structure into an overall three‐dimensional anionic In–O–P network that is penetrated by tunnels running along c. Two independent Cs+ cations reside inside the tunnels, one of which sits on a centre of inversion. In general, the organization of the framework is similar to that of K3In3(PO4)4, which also contains an In3O16 fragment. However, in the latter case the unit consists of one InO7 polyhedron and one InO6 polyhedron sharing an edge, with a third InO6 octahedron connected via a shared corner. Calculations of the Voronoi–Dirichlet polyhedra of the alkali metals give coordination schemes for Cs of [9+2] and [8+4] ( symmetry), and for K of [8+1], [7+2] and [7+2]. This structural analysis shows that the coordination requirements of the alkali metals residing inside the tunnels cause the difference in the In3O16 geometry.  相似文献   

17.
The crystal structure of a double salt of sodium and cesium with 2-diphenylacetyl-1,3-indandione of the composition [Cs2Na(H2O)2(C23H16O3)(C23H15O3)3] (I) was studied by X-ray crystallography. The crystals of I are monoclinic, Z = 2, space group P21/n, a = 10.212(2) ?, b = 23.479(5) ?, c = 15.638(3) ?, β = 98.30(03)°. The compound contains [Cs2NaO10] trimers, in which the central Na atom shares two edges with two Cs atoms through deprotonated bridging ligands. The trimers are connected to adjacent trimers by paired C-H...O contacts to form layers. The layers form an infinite open framework via hydrogen bonds between the oxygen atoms of keto groups of noncoordinated indandione moieties and water molecules that enter the cesium coordination sphere in trimers of the adjacent layers.  相似文献   

18.
基于密度泛函理论(DFT)的B3LYP方法, 研究了TinO2和TinO2- (n=1-10)团簇的几何结构、电子结构以及磁性. 结果表明, 两个氧以分离的原子状态吸附在金属团簇的表面, 呈现出以一个钛原子为中心的O-Ti-O 的相邻吸附形式. 中性团簇和阴离子团簇的能量最低结构相似. 稳定性分析表明TinO2具有很高的稳定性, 特别是TiO2和Ti7O2. 此外, 详细讨论了团簇的电离势、电子亲和能、电子解离能和能隙. 基于最低能量结构, 讨论了团簇的磁性, 发现电荷从Ti 原子向O原子转移, 并且电荷转移主要发生在TinO2的Ti-3d、Ti-4s和O-2p轨道. 磁性团簇中反铁磁序占据主导, 磁矩主要来源Ti-3d电子的贡献, 而两个氧原子的贡献非常小.  相似文献   

19.
Dicaesium tetrachromium(VI) tridecaoxide, Cs2Cr4O13, contains finite [Cr4O13]2− anions composed of four corner‐linked CrO4 tetrahedra. These anions are linked by Cs+ cations whose Cs—O bond lengths range between 3.015 (2) and ∼3.7 Å. Although Cs2Cr4O13 is not isotypic with its NH4, K or Rb analogs, the [Cr4O13]2− anions in all these compounds exhibit a similar zigzag‐like geometry.  相似文献   

20.

Simulation of 137Cs radioactive decay to 137Ba by an equiatomic substitution of Cs with Ba in a 30 Na2O, 10 Cs2O, 10 Al2O3, 10 Fe2O3, 40 P2O5 (mol%) glass was studied by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, Mössbauer spectroscopy, and measurement of hydrolytic durability. Gradual Ba substitution for Cs yielded minor changes in the structural network but did not offer appreciable effect on phase composition and hydrolytic durability of the glasses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号