首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new anisidine possessing benzothiaozle-based chemosensor (1) has been designed and synthesized. The chemosensor 1 was designed to provide hard base environment for ratiometric detection of comparatively less studied Al3+ ions. In CH3CN, the fluorescence spectra of chemosensor 1 red shifted from 368 to 430 nm with addition of Al3+ and Hg2+ ions; while Cu2+ ions caused quenching of emission intensity of 1. These differential changes observed with Al3+ and Cu2+ ions addition enabled chemosensor 1 to construct “NOR” and “TRANSFER” logic gates.  相似文献   

2.
The condensation product (L) of 4-methoxybenzaldehyde and ethylenediamine has been synthesised and characterised. L showed a 21 times enhancement in fluorescence intensity on interaction with Ce3+ in CH3OH at λmax?=?360 nm when excited with 270 nm photons. Metal ions K+, Na+, Al3+, Co2+, Hg2+, Cd2+, Ni2+, Zn2+, Mn2+, Mg2+ and Ca2+ do not interfere. The stoichiometry of binding and the binding constants were determined from spectroscopic data and found to be 1:1 and 104.8 M respectively. The detection limit was found to be 10–5.2 M. The protonation/de-protonation of water molecules coordinated to Ce3+ was found to show interesting behaviour on the fluorescence of L:Ce3+.  相似文献   

3.
A new coumarin based Schiff-base chemosensor-(E)-7-(((8-hydroxyquinolin-2-yl)methylene) amino)-4-methyl-2H-chromen-2-one (H 11 L) was synthesized and evaluated as a colorimetric sensor for Fe3+ and fluorescence “turn on-off” response of Zn2+ and Cu2+ using absorption and fluorescence spectroscopy. Upon treatment with Fe3+ and Zn2+, the absorption intensity as well as the fluorescence emission intensity increases drastically compared to other common alkali, alkaline earth and transition metal ions, with a distinct color change which provide naked eye detection. Formation of 1:1 metal to ligand complex has been evaluated using Benesi-Hildebrand relation, Job’s plot analyses, 1H NMR titration as well as ESI-Mass spectral analysis. The complex solution of H 11 L with Zn2+ ion exhibited reversibility with EDTA and regenerate free ligand for further Zn2+ sensing. H 11 L exhibits two INHIBIT logic gates with two different chemical inputs (i) Zn2+ (IN1) and Cu2+ (IN2) and (ii) Zn2+ (IN1) and EDTA (IN2) and the emission as output. Again, an IMPLICATION logic gate is obtained with Cu2+ and EDTA as chemical inputs and emission as output mode. Both free ligand as well as metal-complexes was optimized using density functional theory to interpret spectral properties. The corresponding energy difference between HOMO-LUMO energy gap for H 11 L, H11L-Zn2+ and H11L-Cu2+ are 2.193, 1.834 and 0.172 eV, respectively.  相似文献   

4.
In this study, we report the synthesis of new Schiff base E-1-(((1-benzylpiperidin-4-yl)imino)methyl)naphthalenee-2-ol (L) and evaluation of its fluorescence response toward Cu2+ ion. Preliminary, solvent effect, metal selectivity and metal ligand ratio were analyzed through UV-Visible study. Fluorescence response toward Cu2+ was carried to assess the fluorescent property of synthesized Schiff base. The probe exhibited a higher fluorescence enhancement in the presence of Cu2+ over other metal ions (Ni2+, Zn2+, Hg2+, Co2+, Cd2+, Al3+, Fe2+, and Pb2+). The binding stoichiometry between L and Cu2+ has been investigated using Job’s plot and Benesi-Hildebrand equation and it was found that ligand L can form 1:1 L-Cu2+ complex with binding constant (K a) of 4?×?104 LM?1.  相似文献   

5.
We report the synthesis and characterization two coumarin-based fluorescence probes, N′-{[7-(diethylamino)-2-oxo-2H-chromen-3-yl]carbonyl}pyridine-3-carbohydrazide (3) and N′-benzoyl-7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (4), proposed as a novel fluorescent chemosensor. The two probes designed showed an instant turn-off fluorescence response to Cu2+ over other metal ions in ethanol-water mixture based on intramolecular charge transfer (ICT). It was found that pyridine-analogue coumarin is highly selective and sensitive sensor for Cu2+. The 3 sensor coordinates Cu2+ in 1:1 stoichiometry with a binding constant, Ka = 5.22 M?1 and the detection limit was calculated 1.97 × 10?9 M.  相似文献   

6.
Copper(I) complexes of the formula [Cu(L)(PPh3)2]X (1–4) (X = Cl(1), ClO4(2), BF4(3) and PF6(4)) [where L = N-(2-{[(2E)-2-(4-nitrobenzylidenyl)hydrazinyl]carbonyl}phenyl)benzamide; PPh3 = triphenylphosphine] have been prepared by the condensation of N-[2-(hydrazinocarbonyl)phenyl]benzamide with 4-nitrobenzaldehyde followed by the reaction with CuCl, [Cu(MeCN)4]ClO4, [Cu(MeCN)4]BF4 and [Cu(MeCN)4]PF6 in presence of triphenylphosphine as a coligand. Complexes 1–4 were then characterized by elemental analyses, FTIR, UV-visible and 1H NMR spectroscopy. Mononuclear copper(I) complexes 1–4 were formed with L in its keto form by involvement of azomethine nitrogen and the carbonyl oxygen along with two PPh3 groups. A single crystal X-ray diffraction study of the representative complex [(Cu(L)(PPh3)2]CIO4 (2) reveals a distorted tetrahedral geometry around Cu(I). Crystal data of (2): space group = C2/c, a = 42.8596 (9) Å, b = 14.6207 (3) Å, c = 36.4643 (7) Å, V = 20,653.7 (7) Å3, Z = 16. Complexes 1–4 exhibit quasireversible redox behaviour corresponding to a Cu(I)/Cu(II) couple. All complexes show blue-green emission as a result of fluorescence from an intra-ligand charge transition (ILCT), ligand to ligand charge transfer transition (LLCT) or mixture of both. Significant increase in size of the counter anion shows marked effect on quantum efficiency and lifetime of the complexes in solution.  相似文献   

7.
A new multifunctional chemosensor 1, (E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione, based on naphtalimide and naphthaldehyde was developed, which showed the fluorescence responses to trivalent metal ions (Ga3+, Al3+ and Cr3+). Sensor 1 detected and differentiated selectively trivalent metal ions Ga3+, Al3+ and Cr3+ by fluorescence enhancement at different emissions. The association constant of Ga3+-2?1 complex is the highest one among those of the organic chemosensors reported, to date. The sensing mechanisms for Ga3+, Al3+ and Cr3+ were explained by UV-vis titrations, Job plots, ESI-mass analyses and theoretical calculations.  相似文献   

8.
A novel, 100% water-soluble chalcone based chemosensing receptor {1-[3-(2-Hydroxy-phenyl)-3-oxo-propenyl]-naphthalen-2-yloxy}-acetic acid, L was synthesized and characterized. The receptor L is designed based on the chelation enhanced fluorescence (CHEF) mechanism. The chemosensing properties of L were evaluated by UV–vis and fluorescence spectrometric methods. It exhibits highly selective recognition ability towards aluminum ions in water over other metal ions. The binding stoichiometry of L? Al3+ complex is 2:1 by means of Job’s plot and the detection limit is 5.66?×?10??8 M.  相似文献   

9.
Some nickel(II) and zinc(II) complexes of the type [Ni(L)(phen/bipy)]X (1a–6a) and [Zn(L) (phen/bipy)]X (1b–6b) (where L = 2-{(E)-[(4-trimethylsilylethynylphenyl)imino]methyl}-4-(4-nitro phenylethynyl)phenol; phen = 1, 10-phenanthroline, bipy = 2, 2´-bipyridine; X = ClO4 ?, BF4 ?, PF6 ?) have been prepared and characterized on the basis of elemental analyses, FTIR, 1H NMR and mass spectral studies. The molecular structure of L was determined by single crystal X-ray diffraction studies. The electrochemical behaviour of the Ni(II) complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its strong π-acidic character. TGA was carried out to study the thermal behavior of the complexes. Room temperature luminescence is observed for all complexes corresponds to π → π* ILCT transition. The size of the counter anion and heterocyclic coligands phen and bipy shows marked effect on emission properties of the complexes.  相似文献   

10.
Biochemically active Cu(II) and Zn(II) complexes [CuL(ClO4)2(1) and ZnL(ClO4)2(2)] have been synthesized from N,N donor Schiff base ligand L derived from4,6-dichloropyrimdine-5-carboxaldehyde with 4-(2-aminoethyl)morpholine. The L, complexes 1 and 2 have been structurally characterized by elemental analysis, 1H-NMR, FTIR, MS, UV-Visible and ESR techniques. The results obtained from the spectral studies supports the complexes 1 and 2 are coordinated with L through square planar geometry. DFT calculations results supports, the ligand to metal charge transfer mechanism can occur between L and metal(II) ions. The antimicrobial efficacy results have been recommended that, complexes 1 and 2 are good anti-pathogenic agents than ligand L. The interaction of complexes 1 and 2 with calf thymus (CT) DNA has been studied by electronic absorption, viscometric, fluorometric and cyclic voltammetric measurements. The calculated Kb values for L, complexes 1 and 2 found from absorption titrations was 4.45?×?104, L; 1.92?×?105, 1 and 1.65?×?105, 2. The Ksv values were found to be 3.0?×?103, 3.68?×?103and 3.52?×?103 for L, complexes 1 and 2 by using competitive binding with ethidium bromide (EB). These results suggest that, the compounds are interacted with DNA may be electrostatic binding. The molecular docking studies have been carried out to confirm the interaction of compounds with DNA. Consequently, in vitro anticancer activities of L, complexes 1 and 2 against selected cancer (lung cancer A549, liver cancer HepG2 and cervical carcinoma HeLa) and normal (NHDF) cell lines were assessed by MTT assay.  相似文献   

11.
A simple “off-on fluorescence type” chemosensor 1 3-((2-(dimethylamino)ethyl)amino)-N-(quinolin-8-yl)propanamide has been synthesized for Zn2+. The receptor 1 comprises the quinoline moiety as fluorophore and the N,N-dimethylethane-1,2-diamine as a binding site. 1 showed a remarkable fluorescence enhancement in the presence of Zn2+ in aqueous solution. Importantly, the chemosensor 1 could be used to detect and quantify Zn2+ in water samples. In particular, this chemosensor could clearly distinguish Zn2+ from Cd2+. The binding properties of 1 with Zn2+ ions were investigated by UV-vis, fluorescence, electrospray ionization mass spectroscopy and 1H NMR titration.  相似文献   

12.
The design, synthesis, and photophysical properties of a new fluorene-based fluorescent chemosensor, 4-((E)-2-(2-(benzo[d]thiazol-2-yl)-9,9-diethyl-9H-fluoren-7-yl)vinyl)-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)benzenamine (AXF-Al), is described for the detection of Al3+. AXF-Al exhibited absorption at 382 nm and strong fluorescence emission at 542 nm (fluorescence quantum yield, Φ F, of 0.80). The capture of Al3+ by the pyrazolyl aniline receptor resulted in nominal change in the linear absorption (372 nm) but a large hypsochromic shift of 161 nm in the fluorescence spectrum (542 to 433 nm, Φ F?=?0.88), from which Al3+ was detected both ratiometrically and colorimetrically. The addition of other metal ions, namely Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg 2+ and Pb2+, produced only minimal changes in the optical properties of this probe. The emission band of this probe was also accessed by two-photon excitation in the near-IR, as two-photon absorption (2PA) is important for potential applications in two-photon fluorescence microscopy (2PFM) imaging. The 2PA cross section of the free fluorenyl ligand AXF-Al was 220 GM at 810 nm and 235 GM at 810 nm for the Al-ligand complex, practically useful properties for 2PFM.  相似文献   

13.
Selective fluorescence turn on Zn2+ sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn2+ sensing area. We reported herein the synthesis and Zn2+ recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn2+ over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn2+.
Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn2+ with a long wavelength emission and a large Stokes shift.
  相似文献   

14.
A new pyrene-based chemosensor (1) exhibits excellent selectivity for Fe3+ ions over a wide range of tested metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+. The binding of Fe3+ to chemosensor 1 produces an emission band at 507 nm due to the formation of a Py-Py* excimer that is induced by Fe3+-binding. The binding ratio of 1-Fe3+ was determined to be 1:1 from a Job plot. The association constant of 1-Fe3+ complexes was found to be 1.27?×?104 M?1 from a Benesi-Hildebrand plot. In addition, fluorescence microscopy experiments show that 1 can be used as a fluorescent probe for detecting Fe3+ in living cells.  相似文献   

15.
A new fluorescent probe based on a bis-benzimidazole diamide N 2,N 2′-bis[(1-ethyl-benzimidazol-2-yl)methyl]biphenyl-2,2′-dicarboxamide ligand L 1 with a biphenyl spacer group and a Copper(II) trinuclear metallacycle has been synthesized and characterized by X-ray single crystallography, elemental and spectral (FT-IR, 1H & 13C NMR, UV-Visible) analysis. The fluorescence spectra of L 1 in MeOH show an emission band centered at 300 nm. This band arises due to benzimidazolyl moiety in the ligating system. The diamide L 1 in the presence of Cu2+ show the simultaneous ‘quenching’ of (300 nm) and ‘enhancement’ of (375 nm) emission band. Similar fluorescence behavior was found in water–methanol mixture (9:1). The new emission band at 375 nm is attributed to intra ligand π–π* transition of the biphenyl moiety. L 1 exhibited high selectivity and sensitivity towards Cu2+ in both the medium over other common metal ions like Ni2+, Co2+, Mn2+, Mg2+, Zn2+, Pb2+ and Hg2+. The binding constant with Cu2+ was calculated by the Benesi-Hildebrand equation. Selective “off-on-off” behavior of L 1 in methanol has also been studied. The fluorescent intensity of 375 nm bands in L 1 enhances (turns-on) upon addition of Cu2+ and quenches (turn-off) upon addition of Na2-EDTA.  相似文献   

16.
Urea based fluorescent chemosensor 1 was synthesized. Receptor 1 shows unique selectivity for the Fe3+ion and no such significant response was noticed with other metal ions (Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and Bi3+) in DMSO/H2O (50:50,v/v) semi-aqueous solution. The binding features have been established by absorption and fluorescence spectroscopic methods. The binding constant (K) values obtained from Benesi-Hildebrand, Scatchard and Connor plot for receptor 1 is (8.3?±?0.3) × 103 M?1 and has good detection limit 0.7?μM. The stoichiometry of 1.Fe3+ complex was confirmed by mass spectroscopy and Job’s plot.
Figure
?  相似文献   

17.
A novel conjugated molecule, L, based on 2,4,5-triphenylimidazole and 6-phenyl-2,2′-bipyridine (HCNN) was synthesized in two steps. The molecule can recognize Fe3+ in aqueous solution (THF/H2O, 1/1, v/v) by the appearance of new emission bands at 416 and 442 nm, which can be attributed to the emission of the newly formed L-Fe3+ complex. The binding constant of the complex was calculated to be (6.6±0.39)×103 M−1, and its formation was also confirmed by the appearance of isosbestic points at 312 and 381 nm in the UV-visible spectral titration experiment. While other transition and rare-earth metal ions, such as Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, Eu3+ and Nd3+, can only cause some decrease of L's fluorescence, alkali and alkaline earth metal ions, such as Li+, Na+, K+, Mg2+ and Ca2+, almost have no effect on L's fluorescence. The fluorescence of L can be recovered by the addition of EDTA to the L-Fe3+ system just due to EDTA's stronger chelating ability than that of L.  相似文献   

18.
Specific functionalized calix[4]arene based fluorescent chemosensor was synthesized for cations and anions binding efficiency examination. Receptor C4MA displayed strong affinity for Al3+and S2O7 2? with enhanced fluorescence intensity. The selective response of C4MA was investigated in the presence of different co-existing competing ions. The limit of detection (LOD) of Al3+and S2O7 2? was calculated as 2.8?×?10?6 M and 2.6?×?10?7 M respectively. Sensor C4MA forms (1:1) stoichiometric complex with both Al3+ and S2O7 2? and their binding constants were calculated as 12.1?×?104 and 8.3?×?103 respectively. Complexes were also characterized through FT-IR spectroscopy.
Graphical Abstract ?
  相似文献   

19.
A Schiff-base fluorescent probe – N, N/-bis(salicylidene) trans 1, 2 – diaminocyclohexane (H 2 L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H 2 L with Zn2+ resulted in a bathochromic shift with a pronounced enhancement in the fluorescence intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. The stoichiometric ratio and association constant were evaluated using Benesi – Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job’s plot analyses.  相似文献   

20.
A novel colorimetric and off–on fluorescent chemosensor 2 was designed and synthesized, which showed reversible and highly selective and sensitive recognition toward Cr3+ over other examined metal ions in aqueous solution. Upon addition of Cr3+, the solution of chemosensor 2 resulted in a color change from colorless to obvious pink color, these significant changes in color could be used for naked-eye detection. Chemosensor 2 exhibited a stable response for Cr3+ in the range 0–10 μM with a detection limit of 1 ppm. Furthermore, fluorescence imaging experiments of Cr3+ ions in living MGC803 cells demonstrated its value of practical applications in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号