首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The composite which contains Ag+ and nanosized hydroxyapatite with TiO2 was deposited onto titanium by dipping method. The morphology, chemical components and structures of the thin film were characterized by XRD, scanning electronic microscope (SEM) and energy dispersive X-ray analysis (EDX). Staphylococcus aureus and Escherichia coli were utilized to test the antibacterial effect. XRD results demonstrated that the films have characteristic diffraction peaks of pure HA. EDX results showed that the deposited films consisted of Ca, P, Ti, O and Ag, all of which distribute uniformly. With regard to the antibacterial effect, 98% of S. aureus and more than 99% of E. coli were killed after 24 h incubation and pictures of SEM showed obviously fewer cells on the surface with coating.  相似文献   

2.
Uniform cuprous oxides with different morphologies have been successfully synthesized using polyvinylpyrrolidone (PVP) as a capping agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectrophotometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy were employed to characterize the structure and morphology of cuprous oxides. It was found that the reaction conditions such as PVP, reducing agent and complexing agent played important roles in the formation of regular cuprous oxide crystals. In addition, their antibacterial activity against Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) was also investigated by the Oxford cup method. Results suggested that cuprous oxides are selective in their antibacterial action. They display effective antibacterial activity against S. aureus, B. subtilis and P. aeruginosa. There is no bactericidal ability against E. coli in the tested concentration range, which indicates that E. coli may be a Cu(I)-tolerant bacterium.  相似文献   

3.
Silver nanocluster/silica composite coatings were deposited on both soda-lime and silica glasses by radio frequency (RF) co-sputtering. The effect of thermal treatments on the microstructure in the range of 150?C450?°C were examined by UV?Cvisible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Time of Flight-Elastic Recoil Detection Analysis. Sodium/silver ionic exchange was evidenced for coatings sputtered on soda-lime substrates after heating at 450?°C; presence of silver ions and/or silver nanoclusters, nanocluster size and their position inside the sputtered layers will be discussed for as-deposited and heated coatings on both substrates. The antibacterial activity of all coatings was determined against Staphylococcus aureus and Candida albicans by disk diffusion method and colonies forming units count; in agreement with microstructural results, the antibacterial activity present on all coatings was slightly reduced after heating at 450?°C. All coatings have been submitted to humidity plus UV ageing and sterilization by autoclave, gamma ray and ethylene oxide gas. Tape resistance (ASTM D3359-97) tests have been done on each coating before and after ageing and sterilizations, revealing a good adhesion on soda-lime substrates, except for those aged in humidity plus UV and sterilized by autoclave. Scratch tests and nanoindentation tests have been done on each coating, as-deposited and after heating at 450?°C. The coating hardness was improved by heating only when coatings were deposited on silica. The heating of coatings deposited on soda-lime substrates gave opposite effect on their hardness.  相似文献   

4.
A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe2+ to Fe3+ via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.  相似文献   

5.
Spherical Sn–carbon core-shell powders (CSCM/Sn) were synthesized through a resorcinol–formaldehyde microemulsion polymerization performed in the presence of SnO2 powders, followed by carbonization in an inert atmosphere. Scanning electron microscope and X-ray diffractometry analyses showed that the Sn powders were thoroughly encapsulated within the carbon microspheres. The CSCM/Sn presented much better cyclability than the conventional Sn–carbon microsphere composite. In core-shell-structured composite, most of the Sn particles were encased inside carbon microspheres and not easy to aggregate or fall off from the microspheres. The carbon shell suppressed the aggregation of tin particles and alleviated the volume change of tin, and the conductive carbon shell effectively decreased the polarization during cycling, giving rise to better high rate performance and excellent capacity retention ability. It is shown that surface structure plays an important role in alloy/C composite anode materials for lithium-ion battery.  相似文献   

6.
Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu2O.  相似文献   

7.
ZnO nanopowders doped with 5 and 10 at% cobalt were synthesized and their antibacterial activity was studied. Cobalt doped ZnO powders were prepared using dc thermal plasma method. Crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-vis spectroscopy. The particle size and morphology was observed by SEM and HRTEM, revealing rod like morphology. The antibacterial activity of undoped ZnO and cobalt doped ZnO nanoparticles against a Gram-negative bacterium Escherichia coli and a Gram-positive bacterium Bacillus atrophaeus was investigated. Undoped ZnO and cobalt doped ZnO exhibited antibacterial activity against both E. coli and Staphylococcus aureus but it was considerably more effective in the cobalt doped ZnO.  相似文献   

8.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane, with its excellent chemical and mechanical properties, has good potential for broad applications. However, due to its hydrophobic nature, microbial colonization is commonly encountered. In this work, electrospun PVDF-HFP fibrous membranes were surface modified by poly(4-vinyl-N-alkylpyridinium bromide) to achieve antibacterial activities. The membranes were first subjected to plasma pretreatment followed by UV-induced surface graft copolymerization of 4-vinylpyridine (4VP) and quaternization of the grafted pyridine groups with hexylbromide. The chemical composition of the surface modified PVDF-HFP electrospun membranes was studied by X-ray photoelectron spectroscopy (XPS). The morphology and mechanical properties of pristine and surface modified PVDF-HFP fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile test, respectively. The antibacterial activities of the modified electrospun PVDF-HFP fibrous membranes were assessed against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The results showed that the PVDF-HFP fibrous membranes modified with quaternized pyridinium groups are highly effective against both bacteria with killing efficiency as high as 99.9999%.  相似文献   

9.
Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O2–H2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.  相似文献   

10.
To produce an edible film with high mechanical and physicochemical properties, Tuna skin collagen-chitosan (TSC-CTS) composite films were prepared by incorporating ultrasound (UT) and pomegranate polyphenols including gallic acid (GA), tannic acid (TA), and ellagic acid (EA), respectively. The tensile strength and the DPPH scavenging activity of the GA-UT-TSC-CTS film (ultrasound frequency of 28 ± 0.5 kHz, power of 100 W/L, sweep frequency cycle of 100 ms, duty ratio of 77% and time of 10 min; GA concentration of 1.0 g/L and reaction time of 10 min) were increased by 47.03% and 24.16 folds, respectively compared to the control (TSC-CTS film). Meanwhile, light transmittance and water vapor permeability of the GA-UT-TSC-CTS film were decreased by 29.26% and 15.70%, respectively. These positive modification results were attributed to the altered structure during the film formation process, which were verified by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), X-ray diffraction (XRD), and thermogravimetry results. Moreover, the GA-UT-TSC-CTS film possessed moderate thermal stability and color indexes and improved antibacterial activity. The antibacterial effect of the film against Bacillus subtilis was the highest, followed by Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. Overall, the combination modification of gallic acid and ultrasound was an efficient modification method to improve the mechanical, antioxidant, and antibacterial properties of edible TSC-CTS films.  相似文献   

11.
We report on a simple and effective ultrasound-assisted deposition of vanillin nanoparticles (∼50 nm in size), raspberry ketone (RK) nanoparticles (∼40 nm in size) and camphor nanoparticles (width ∼30 nm, length ∼40 nm in size) on textiles and on polypropylene surfaces. The excellent antibacterial and antifungal activity of the fragrant coatings on cotton bandages, and polypropylene surface against Escherichia coli (E. coli), Salmonella paratyphi A (S. paratyphi A) and the yeast Candida albicans (C. albicans) cultures was demonstrated. It is worth pointing out that these fragrant materials are edible, making them very useful for packaging. The mechanism of the edible fragrant coating formation and adhesion to the textile was discussed, and finally an up-scaling of the sonochemical process for textile coating was carried out.  相似文献   

12.
Inhibition of Candida albicans growth was shown by lemon grass oil (LGO) and lemon grass oil vapour (LGO vapour) at 288 μg/ml and 32.7 μg/ml concentration, respectively. The assessment of cell damage by LGO and LGO vapour was done through scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) observations. SEM analysis showed complete rupture of C. albicans cells treated with LGO vapour while in those treated with LGO in broth, only shrinkage was observed. TEM study showed the alterations in morphology upon treatment with LGO while complete degradation of the Candida cells was observed in case of LGO vapour. Further three dimensional morphological changes and roughness of the cells have also been evaluated with AFM after the treatment with LGO & LGO vapour. Roughness (root mean square value) was significantly higher in control C. albicans cells (211.97 nm) than LGO (143 nm) and LGO vapour (5.981 nm) treated cells. The results for the first time demonstrate relatively higher efficacy of LGO vapours for inhibition and cellular damage of C. albicans cells as compared to the LGO in liquid phase. This suggests the potential application of LGO vapour phase against infections caused by C. albicans.  相似文献   

13.
The nano-sized coupled oxides ZnO/SnO2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli (E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.  相似文献   

14.
Chitosan nanoparticles (CSNP) were obtained by H2O2 degradation of chitosan. Their morphology and size were determined by atomic force microscope (AFM), and the particles were found smooth and approximately 36 nm in size. CSNP-0.5% HAc solutions (1, 2, 5, and 10 mg/mL) were used in antibacterial paper by addition in pulp, impregnation, dispersion coating on the handsheets, and insufflation. The antibacterial activity of CSNP against Escherichia coli and Staphylococcus aureus was measured by the inhibition zone and bacterial reduction methods. Results showed that the antibacterial activity of CSNP was improved with the increase in concentration. For E. coli, at a CSNP concentration of 5 mg/mL, the antibacterial rate reached approximately 95%. However, for S. aureus, the antibacterial rate only reached 81%. In addition, the antibacterial activity of the antibacterial paper was determined by inhibition zone method. The paper prepared by insufflation had the greatest activity. For E. coli, at a CSNP concentration of 10 mg/mL, the inhibition zone reached 8.0 mm. For S. aureus, the inhibition zone was 6.8 mm.  相似文献   

15.
Cu–Ag core–shell particles were fabricated from Cu particles and silver sulphate with the environmental-friendly TA (tartaric acid, C4H6O6) as reducing and chelating agent in an aqueous system. The influences of [TA]/[Ag] and [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles were investigated. The SEM images and SEM–EDS analyses showed that [TA]/[Ag] = 0.5 and [Ag]/[Cu] ≥0.2, the Cu particles were coated with uniform Ag nanoparticles. XRD analyses revealed that for these Cu–Ag particles heated at 250 °C, the oxidation of Cu was significantly reduced. Both anti-Staphylococcus aureus (Gram-positive) and anti-Escherichia coli (Gram-negative) characteristics of this Cu–Ag composite particles showed satisfactory antibacterial ability. The characteristics of the composite Cu–Ag particles were discussed in detail.  相似文献   

16.
Poly(acrylamide) [poly(AAm)] and poly(N-isopropyl-acrylamide) [poly(NIPAAm)] based gel films containing Au nanoparticles (d = 14 ± 2.5 nm) were synthesized. Monomers and cross-linker were added to a gold nanodispersion, and after the addition of the initiator, polymer films were prepared on the surface of an interdigital microelectrode by photopolymerization. In the course of the syntheses the gold concentration of the films was constant (10.8 μg/cm2) and the volume fraction of Au nanoparticles (?Au) in the polymer gel films varied in the range of 0.58-85.3%. Poly(AAm)-based films swell when the temperature increases: due to a temperature shift of 15 °C the Au plasmon absorption maximum at λ = ∼532 nm was shifted towards shorter wavelengths by 16.6 nm (blue shift) through the swelling of the polymer gel film. In the case of poly(NIPAAm) the temperature-induced shrinking resulted in a red shift, namely the maximum was shifted by 18.07 nm by a temperature shift of 15 °C. In the case of both composites, the electric conductivity of the samples was shown to increase with increasing Au particle concentration. In the case of the poly(AAm)-based composite containing ?Au = 0.85 gold the resistance of the film spread on the surface of the electrode was 0.16 MΩ at 25 °C and 0.66 MΩ at 50 °C, i.e. the conductivity of the sample decreased with increasing temperature. The opposite effect is observed in the case of the poly(NIPAAm)-based composite: as temperature is raised, the resistance of the composite abruptly drops at the point of collapse of the NIPAAm gel (it is 0.28 MΩ at 32 °C and only 0.021 MΩ at 35 °C). This thermosensitive effect was detectable only at sufficiently high Au contents (?Au = 0.85) in both gels.  相似文献   

17.
Composite Au/TiO2 nanoparticles were synthesized by laser ablation of gold plate in TiO2 sol. The nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and atomic force microscopy. The peak of surface plasmon is at 550 nm with a red shift of 30 nm compared with that of Au nanoparticles in water. Monolayers of composite Au/TiO2 nanoparticles were obtained by dip-coating technique. The XRD pattern of Au/TiO2 powders resembles a mixture of anatase TiO2 and gold.  相似文献   

18.
A novel type of gold nanoparticle/multi-walled carbon nanotube (AuNP/MWCNT) composite electrodes is presented. The electrochemical reduction of oxygen on these hybrid electrodes was studied using the rotating disk electrode (RDE) method. The AuNP/MWCNT nanocomposites were prepared by sputter deposition of gold in argon atmosphere on MWCNTs followed by heat-treatment of the catalyst at different temperatures. High-resolution scanning electron microscopy (HR-SEM), glancing incidence angle X-ray powder diffraction (GIXRD) and small-angle X-ray scattering (SAXS) techniques were employed to characterise the surface structure and morphology of catalyst materials. Au nanoparticles with diameter around 20 nm were dispersed at the tips and on the sidewalls of nanotubes. Electrochemical measurements were performed to demonstrate the electrocatalytic properties of the composite catalysts towards O2 reduction in acid media. The successful preparation of AuNP/MWCNT nanocomposites by magnetron sputtering opens up the possibility of making an efficient dispersion of nanoparticles for electrocatalyst design.  相似文献   

19.
A facile and efficient approach to prepare uniform gold nanoparticles (Au NPs) in hybrid hydrogel consisting of acrylamide (AM) and alginate (SA) for antibacterial applications is reported. In this study, reduction of gold ions by acrylamide and alginate (AM–SA) occurred before the polymerization and as-obtained gold colloids are stabilized by AM–SA immediately in the absence of commonly used reducing agents and protective reagents. Via transmittance electron microscopy results, we can conclude that the obtained gold nanoparticles in hydrogel are well dispersed. Furthermore, ultraviolet–visible absorption spectroscopy, Fourier transform infrared and thermogravimetric analysis were used to characterize the structure and composition of the synthetic nanocomposites. Our approach provides well-dispersed nanoparticles around 8 mm in size. It is important to underline that nanoparticle aggregation was not observed during and after gel formation. The prepared Au NPs exhibited remarkable stability in the presence of high pH s, and a range of salt concentrations. Importantly, the hydrogel/gold nanocomposites showed a non-compromised activity to inhibit the growth of a model bacterium, Escherichia coli. With their excellent mechanical behavior, as well as the remained antibacterial activity, the nanocomposites should get various potential applications in the fields of pharmaceutical science and tissue engineering.  相似文献   

20.
Laboratory source X-ray scattering set-up has been used to determine the complete morphology and structure of an optically important composite thin film. Analysis of grazing incidence small angle X-ray scattering, X-ray reflectivity and powder diffraction data of Au/LiNbO3 thin film prepared by sequential deposition of gold and lithium niobate on float glass substrate suggest that the Au-nanocrystallites are dispersed in amorphous medium, which although have average separation but do not have any long range periodicity other than growth or z-direction. The morphology of the nanocomposite thin film determined through X-ray scattering measurements agrees well with the measured optical absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号