首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
2.
We propose a data set of bond lengths for 8 selected transition metal dimers (Ag(2), Cr(2), Cu(2), CuAg, Mo(2), Ni(2), V(2), and Zr(2)) and another data set containing their atomization energies and the atomization energy of ZrV, and we use these for testing density functional theory. The molecules chosen for the test sets were selected on the basis of the expected reliability of the data and their ability to constitute a diverse and representative set of transition element bond types while the data sets are kept small enough to allow for efficient testing of a large number of computational methods against a very reliable subset of experimental data. In this paper we test 42 different functionals: 2 local spin density approximation (LSDA) functionals, 12 generalized gradient approximation (GGA) methods, 13 hybrid GGAs, 7 meta GGA methods, and 8 hybrid meta GGAs. We find that GGA density functionals are more accurate for the atomization energies of pure transition metal systems than are their meta, hybrid, or hybrid meta analogues. We find that the errors for atomization energies and bond lengths are not as large if we limit ourselves to dimers with small amounts of multireference character. We also demonstrate the effects of increasing the fraction of Hartree-Fock exchange in multireference systems by computing the potential energy curve for Cr(2) and Mo(2) with several functionals. We also find that BLYP is the most accurate functional for bond energies and is reasonably accurate for bond lengths. The methods that work well for transition metal bonds are found to be quite different from those that work well for organic and other main group chemistry.  相似文献   

3.
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.  相似文献   

4.
5.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

6.
This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0>B3LYP>PBE approximately BP86>BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53 kJmol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals.  相似文献   

7.
Ground- and excited-state diatomic bond lengths, vibrational levels, and potential-energy curves are determined using conventional and localized Hartree-Fock (LHF)-based density-functional theory. Exchange only and hybrid functionals (with various fractions of exchange) are considered, together with a standard generalized gradient approximation (GGA). Ground-state bond lengths and vibrational wave numbers are relatively insensitive to whether orbital exchange is treated using the conventional or LHF approach. Excited-state calculations are much more sensitive. For a standard fraction of orbital exchange, N2 and CO vertical excitation energies at experimental bond lengths are accurately described by both conventional and LHF-based approaches, providing an asymptotic correction is present. Excited-state bond lengths and vibrational levels are more accurate with the conventional approach. The best quality, however, is obtained with an asymptotically corrected GGA functional. For the ground and lowest four singlet excited states, the GGA mean absolute errors in bond lengths are 0.006 A (0.5%) and 0.011 A (0.8%) for N2 and CO, respectively. Mean absolute errors in fundamental vibrational wavenumbers are 49 cm(-1) (2.7%) and 68 cm(-1) (5.0%), respectively. The GGA potential-energy curves are compared with near-exact Rydberg-Klein-Rees curves. Agreement is very good for the ground and first excited state, but deteriorates for the higher states.  相似文献   

8.
9.
We have developed a new database of structures and bond energies of 59 noble-gas-containing molecules. The structures were calculated by CCSD(T)/aug-cc-pVTZ methods and the bond energies were obtained using the CCSD(T)/complete basis set method. Many wavefunction-based and density functional theory methods have been benchmarked against the 59 accurate bond energies. Our results show that the MPW1B95, B2GP-PLYP, and DSD-BLYP functionals with the aug-cc-pVTZ basis set excel in predicting the bond energies of noble-gas molecules with mean unsigned errors (MUEs) of 2.0 to 2.1 kcal/mol. When combinations of Dunning's basis sets are used, the MPW1B95, B2GP-PLYP, DSD-BLYP, and BMK functionals give significantly lower MUEs of 1.6 to 1.9 kcal/mol. Doubly hybrid methods using B2GP-PLYP and DSD-BLYP functionals and MP2 calculation also provide satisfactory accuracy with MUEs of 1.4 to 1.5 kcal/mol. If the Ng bond energies and the total atomization energies of a group of 109 main-group molecules are considered at the same time, the MPW1B95/aug-cc-pVTZ single-level method (MUE = 2.7 kcal/mol) and the B2GP-PLYP and DSD-PLYP functionals with combinations of basis sets or using the doubly hybrid method (MUEs = 1.9-2.2 kcal/mol) give the overall best result.  相似文献   

10.
We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

11.
12.
The CASPT2, CCSD, and CCSD(T) levels of wave function theory and seven density functionals were tested against experiment for predicting the ionization potentials and bond dissociation energies of actinoid monoxides and dioxides with their cations. The goal is to guide future work by enabling the choice of an appropriate method when performing calculations on actinoid-containing systems. We found that four density functionals, namely MPW3LYP, B3LYP, M05, and M06, and three levels of wave function theory, namely CASPT2, CCSD, and CCSD(T), give similar mean unsigned errors for actinoid?Coxygen bond energies and for ionization potentials of actinoid oxides and their cations.  相似文献   

13.
Photoionization efficiency curves were measured for gas-phase FeO and CuO using tunable vacuum-ultraviolet radiation at the Advanced Light Source. The molecules are prepared using laser ablation of a metal-oxide powder in a novel high-repetition-rate source and are thermally moderated in a supersonic expansion. These measurements provide the first directly measured ionization energy for CuO, IE(CuO)=9.41 +/- 0.01 eV. The direct measurement also gives a greatly improved ionization energy for FeO, IE(FeO) = 8.56 +/- 0.01 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to a refined bond strength for the FeO cation: D0(Fe(+)-O)=3.52 +/- 0.02 eV. A dramatic increase in the photoionization cross section at energies of 0.36 eV above the threshold ionization energy is assigned to autoionization and direct ionization involving one or more low-lying quartet states of FeO+. The interaction between the sextet ground state and low-lying quartet states of FeO+ is key to understanding the oxidation of hydrogen and methane by FeO+, and these experiments provide the first experimental observation of the low-lying quartet states of FeO+.  相似文献   

14.
We present a periodic density functional theory investigation of twoproton‐ordered phases of ice. Their equilibrium lattice parameters,relative stabilities, formation energies, and densities of states havebeen evaluated. Nine exchange‐correlation functionals, representativeof the generalized gradient approximation (GGA), global hybrids,range‐separated hybrids, meta‐GGA, and hybrid meta‐GGA families havebeen taken into account, considering two oxygen basis sets. Althoughthe hydrogen‐bond network of ice is well reproduced at the B3LYP,M06‐L, or LC‐ wPBE levels, formation energies are only correctlyevaluated with the two former functionals. Band gaps on the other handare only quantitatively reproduced at the B3LYP level. These resultsindicate that this last functional, a de facto reference formolecular calculations, gives in average the most accurate results forthe considered ice properties. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

15.
We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic pi ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca(2), Mn(2), and Zn(2) are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground-state symmetry in the vast majority of cases and rarely fails qualitatively. This further confirms TPSS as a general purpose functional that works throughout the periodic table. We also give workstation timing comparisons for the 645-atom protein crambin.  相似文献   

16.
17.
Low‐lying equilibrium geometric structures of AlnN (n = 1–12) clusters obtained by an all‐electron linear combination of atomic orbital approach, within spin‐polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three‐parameter hybrid generalized gradient approximation (GGA) due to Becke–Lee–Yang–Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static dipole polarizabilities are calculated for the ground‐state structures within the GGA. It is observed that symmetric structures with the nitrogen atom occupying the internal position are lowest‐energy geometries. Generalized gradient approximation extends bond lengths as compared with the LSDA lengths. The odd–even oscillations in the dissociation energy, the second differences in energy, the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within the GGA. The stability analysis based on the energies clearly shows the Al7N cluster to be endowed with special stability. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

18.
19.
We have implemented a Gaussian basis-set two-component self-consistent field method based on the fourth-order nuclear-only Douglas-Kroll-Hess approximation. Two-electron spin-orbit effects are included using Boettger's screened-nuclear spin-orbit approximation. In our two-component approach, the spin-orbit interaction is taken into account in a variational fashion employing a generalized Kohm-Sham scheme which allows one to work with hybrid density functionals. For open-shell systems we adopt the noncollinear spin-density approximation. Results are presented for equilibrium bond lengths, harmonic vibrational frequencies, and bond dissociation energies with local spin-density, generalized gradient approximation, and hybrid functionals in a set of benchmark molecules.  相似文献   

20.
In the present study, we comparatively assessed the newly developed M05 functional against a data set of reaction energies for transition-metal chemistry. The functionals to which we compare are BLYP, B3LYP, B97-2, MPWLYP1M, TPSS, and TPSSh. We draw the following conclusions: (1) TPSS gives the best performance for calculating the binding energies of three transition-metal dimers (Sc(2), Ni(2), and V(2)) that have severe multireference character, (2) B97-2 gives the best performance for calculating the binding energies of the nine metal-ligand diatomics (three monohydrides, three monoxide, and three monofluorides), and (3) M05 gives the overall best performance for all 18 data in the assessment, and it has a mean unsigned error 55% lower than the popular B3LYP functional. Since the M05 functional also gives good performance for main-group thermochemistry, for noncovalent chemistry, and for calculating barrier heights, M05 can be applied to a wide range of problems where nonhybrid functionals or functionals designed for kinetics fail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号