首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Organic room-temperature phosphorescence (RTP) materials are very attractive, but there is still a challenge to achieve RTP for their practical applications under visible light excitation (λ > 400 nm) because of the implement for the most organic RTP is under ultraviolet light. Herein, a simple tactics for inhibiting the vibrational dissipation of three amorphous phenanthroline derivatives by doping them into polyvinyl alcohol (PVA) matrix was utilized to afford visible-light excitation RTP. By using this method, on account of the mutual H-bonding and confinement effect with PVA matrix, a series of organic RTP materials with blue-green phosphorescence emission were obtained under visible-light excitation. The afterglow colors of RTP materials can be adjusted by co-doping the available fluorescence dyes (RhB or Rh6G) into the PVA films through a triplet-to-singlet Förster resonance energy transfer. However, the H-bonding is easily broken by water molecules resulting in the RTP phenomenon disappears. Hence, Aphen-epoxy resin composite system was constructed to overcome this drawback. It is shown that the composite still has good phosphorescence properties after soaking in water for 7 days. The superior RTP of the amorphous phenanthroline derivatives in processable polymer matrices endows these materials with a highly potential for the night warning clothing coating and information encryption.  相似文献   

2.
《中国化学快报》2023,34(8):108070
Carbon dots (CDs) with room-temperature phosphorescence (RTP) have attracted dramatically growing interest in optical functional materials. However, the photoluminescence mechanism of CDs is still a vital and challenging topic. In this work, we prepared CD-based RTP materials via melting boric acid with various lengths of alkyl amine compounds as precursors. The spatial effect on the structure and the RTP properties of CDs were systematically investigated. With the increase in carbon chain length, the interplanar spacing of the carbon core expands and crosslink-enhanced emission weakens, resulting in a decrease in the phosphorescence intensity and lifetimes. Meanwhile, based on triplet-to-singlet resonance energy transfer, we employed intense and long-lived phosphorescence CDs as the donor and short-lived fluorescent dyes as the acceptor to achieve long-lived multicolor afterglow. By the triplet-to-singlet resonance energy transfer, the afterglow color can change from green to orange. The afterglow lifetimes are more than 0.9 s. Thanks to the outstanding afterglow properties, the composites were used for time-resolved and multiple-color advanced anticounterfeiting. This work will promote the design of multicolor and long-lived afterglow materials and expand their applications.  相似文献   

3.
In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP−F, TeP−Cl and TeP−Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP−Br, TeP−Cl), the fluoro-substituted TeP−F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.  相似文献   

4.
We found that boronate particles ( BP ), as a self‐assembled system prepared by sequential dehydration of benzene‐1,4‐diboronic acid with pentaerythritol, showed greenish room‐temperature phosphorescence (RTP). This emission was observed in both solid and dispersion state in water. To understand the RTP properties, X‐ray crystallographic analysis, and density functional theory (DFT) and time‐dependent DFT at M06‐2X/6‐31G(d,p) level were performed using 3,9‐dibenzo‐2,4,8,10‐tetraoxa‐3,9‐diboraspiro[5.5]undecane ( 1 ) as a model compound. Our interest in functionalizing the RTP‐active particles led us to graft Rhodamine B onto their surface. The resulting system emitted a dual afterglow via a Förster‐type resonance energy transfer process from the BP in the excited triplet state to Rhodamine B acting as an acceptor fluorophore. This emission behavior was used for ratiometric afterglow sensing of water content in THF with a detection limit of 0.28 %, indicating that this study could pave the way for a new strategy for developing color‐variable afterglow chemosensors for various analytes.  相似文献   

5.
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1H) and a lower-lying T1 (T1L) can be observed, while for TPXZPhCor, T1H-dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax) and a luminance (Lmax) of 3.3 % and 5167 cd m−2, respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.  相似文献   

6.
方便地合成了三个含有卤素取代邻苯二甲酰亚胺与咔唑基团的新型有机发光材料Br-Al-Cz,Cl-Al-Cz和F-AI-Cz,发现它们不仅具有强的聚集诱导发光效应,而且显示膜态下热激活延迟荧光以及晶态诱导的室温磷光性质.尤其是化合物Br-Al-Cz表现出肉眼可见的长余辉室温磷光现象,因此在数据加密等中具有潜在用途.  相似文献   

7.
研究了以La3+离子为辅助激活剂,对Sm3+掺杂的发光材料Sr2SnO4:Sm3+余辉性能的影响。采用传统的高温固相法合成Sr2SnO4∶Sm3+,La3+红色长余辉发光材料。利用X射线粉末衍射仪、荧光光谱仪、热释光剂量仪等手段对粉末样品进行了表征。分析结果表明,在1400℃得到了单相Sr2SnO4,Sr2SnO4∶Sm3+,La3+发光粉末有563、599和646 nm 3个发射峰,与Sm3+单掺杂的Sr2SnO4∶Sm3+相比,其光谱发射峰位没有明显变化。余辉亮度衰减曲线表明适量的La3+掺杂可以延长Sr2SnO4∶Sm3+的余辉时间。通过对热释光谱的分析,解释了双掺杂发光粉余辉性能增强的原因,La3+掺杂增加了更多适宜深度的陷阱(VSr″),可以有效存储光能,增强余辉的时间和强度。  相似文献   

8.
采用乙二醇辅助共沉淀法制备了小尺寸Cr,In共掺杂MgGa2O4(MGO∶Cr, In)近红外长余辉发光纳米粒子(Persistent luminescence nanoparticles, PLNPs), 并考察了Cr, In共掺杂及煅烧温度对MGO晶体结构、 余辉发光性质和尺寸的影响. 结果表明, 最优Cr, In共掺杂浓度分别为0.3%和0.02%, MGO∶Cr, In晶体属于Fd3m空间群, Cr, In共掺杂对纳米颗粒的结构无影响, 平均粒径为(8.61±2.23) nm, 分散性良好, 最佳煅烧温度为700 ℃. 并且, In掺杂可有效延长其余辉发光寿命, 平均发光寿命(τav)从49.33 s增大至52.89 s; 荧光量子产率增高至44.9%; 活化能Ea为(0.36±0.04) eV, 具有良好的热稳定性; 陷阱深度为0.696 eV. 此外, 该PLNPs分别在260 nm、410 nm和600 nm处有激发峰, 表明UV光、 蓝绿光以及红光皆可实现对其的激发, 发射波长皆位于705 nm处, 属于Cr3+2E(2G)→4A2(4F)跃迁. 该PLNPs在红色LED灯、 光学储器件以及生物医学等领域具有巨大潜在应用价值.  相似文献   

9.
Room-temperature phosphorescence (RTP) emitters have attracted significant attention. However, purely organic RTP emitters in red to near-infrared region have not been properly investigated. In this study, a series of naphthalenediimide−halobenzoate-linked molecules are synthesized, one of which exhibits efficient RTP properties, showing red to near-infrared emission in solid and aqueous dispersion. Spectroscopic studies and single-crystal X-ray diffraction analysis have shown that the difference in the stacking modes of compounds affects the optical properties, and the formation of intermolecular charge-transfer complexes of naphthalenediimide−halobenzoate moiety results in a bathochromic shift of absorption and RTP properties. The time-dependent density functional theory calculations showed that the formation of charge-transfer triplet states and the external heavy atom effect of the halogen atom enhance the intersystem crossing between excited singlet and triplet states.  相似文献   

10.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.  相似文献   

11.
Persistent room‐temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red‐emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br−H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water‐dispersity for biomedical applications.  相似文献   

12.
An organic crystal of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol−1. The good separation of TADF and RTP is due to a 11.8 kcal mol−1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

13.
An organic crystal of 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (pCBP) exhibits time‐dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well‐separated, long‐persistent thermally activated delayed fluorescence (TADF) and room‐temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol?1. The good separation of TADF and RTP is due to a 11.8 kcal mol?1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited‐state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

14.
《中国化学快报》2022,33(9):4213-4218
Stabilizing triplet excited states is important for room temperature phosphorescence (RTP) materials to achieve multifunctional applications in humid environment. However, due to the lack of preparation strategies, the realization of RTP materials in water still faces challenges. Herein, a new design strategy was presented to achieve RTP in water by confining carbonized polymer dots (CPDs) in amino functional mesoporous silica (MSNs-NH2). The as-prepared MSNs-CPDs aqueous dispersion exhibited blue afterglow, lasting more than 3 s to naked eyes. The triplet excited states were protected from non-radiative deactivation by the double-confinement effect including covalent bonding fixation and mesoporous structure confinement. The MSNs-CPDs inherited the structure of MSNs-NH2, so the stability of morphology and properties were superior to CPDs and even most of silica-based CPDs RTP materials. A water-related encryption technique demonstrated the promising application of MSNs-CPDs as smart materials in the field of information security. Besides, the possibility of potential application in ion detection was also explored.  相似文献   

15.
The small Stokes shift and weak emission in the solid state are two main shortcomings associated with the boron-dipyrromethene (BODIPY) family of dyes. This study presents the design, synthesis and luminescent properties of boron difluoro complexes of 2-aryl-5-alkylamino-4-alkylaminocarbonylthiazoles. These dyes display Stokes shifts (Δλ, 77–101 nm) with quantum yields (ϕFL) up to 64.9 and 34.7 % in toluene solution and in solid state, respectively. Some of these compounds exhibit dual fluorescence and room-temperature phosphorescence (RTP) emission properties with modulable phosphorescence quantum yields (ϕPL) and lifetime (τp up to 251 μs). The presence of intramolecular H-bonds and negligible π-π stacking revealed by X-ray crystal structure might account for the observed large Stokes shift and significant solid-state emission of these fluorophores, while the enhanced spin-orbit coupling (SOC) of iodine and the self-assembly driven by halogen bonding, π-π and C−Hπ interactions could be responsible for the observed RTP of iodine containing phosphors.  相似文献   

16.
Red emission is one of the three primary colors and is indispensable for full color displays. Fluorescent materials that can generate efficient red electroluminescence (EL) are limited and need to be developed. In this work, we report efficient red emitters based on phenanthro[9,10-d]imidazole-naphtho[2,3-c][1,2,5]thiadiazole donor-acceptor derivatives. The molecules, abbreviated as PINzP and PINzPCN, exhibited high photoluminescence quantum yield (PLQY) up to unity in doped films. They can also reach a relatively high PLQY of ∼30% in neat films. PINzP and PINzPCN were capable of generating efficient red EL in doped devices with a maximum external quantum efficiency (EQE) of 6.96% and 5.92%, respectively.  相似文献   

17.
Designing organic afterglow materials with a high efficiency and long lifetime is highly attractive but challenging because of the inherent competition between the luminescence efficiency and lifetime. Here, we propose a simple yet efficient strategy, namely fluorine-induced aggregate-interlocking (FIAI), to realize both an enhanced efficiency and elongated lifetime of afterglow materials by stimulating the synergistic effects of the introduced fluorine atoms to efficiently promote intersystem crossing (ISC) and intermolecular non-covalent interactions for facilitating both the generation of triplet excitons and suppression of non-radiative decays. Thus, the fluorine-incorporated afterglow molecules exhibit greatly enhanced ISC with a rate constant up to 5.84 × 107 s−1 and suppressed non-radiative decay down to 0.89 s−1, resulting in efficient organic afterglow with a simultaneously improved efficiency up to 10.5% and a lifetime of 1.09 s. Moreover, accompanied by the efficient phosphorescence emission especially at cryogenic temperature, color-tunable afterglow was also observed at different temperatures. Therefore, tri-mode multiplexing encryption devices by combining lifetime, temperature and color, and visual temperature sensing were successfully established. The FIAI strategy by addressing fundamental issues of afterglow emission paves the way to develop high-performance organic afterglow materials, opening up a broad prospect of aggregated and excited state tuning of organic solids for emission lifetime-resolved applications.

Through the fluorine-induced aggregate-interlocking (FIAI) strategy, the designed afterglow materials showed both improved quantum yields and prolonged lifetimes by breaking through the intrinsic bottlenecks of organic afterglow.  相似文献   

18.
Carbon dots (CDs) have attracted attention in metal‐free afterglow materials, but most CDs were heteroatom‐containing and the afterglow emissions are still limited to the short‐wavelength region. A universal approach to activate the room‐temperature phosphorescence (RTP) of both heteroatom‐free and heteroatom‐containing CDs was developed by one‐step heat treatment of CDs and boric acid (BA). The introduction of an electron‐withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long‐lifetime and multi‐color (blue, green, green‐yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD‐based RTP materials in information encryption and decryption are also proposed and demonstrated.  相似文献   

19.
Pure organic luminogens with persistent room‐temperature phosphorescence (p‐RTP) have attracted increasing attention owing to their vital significance and potential applications in security inks, bioimaging, and photodynamic therapy. Previously reported p‐RTP luminogens normally possessed through‐bond conjugation. In this work, we report a pure organic luminogen, AN‐MA, the Diels–Alder cycloaddition adduct of anthracene (AN) and maleic anhydride (MA), which possesses isolated phenyl groups and an anhydride moiety. AN‐MA exhibits aggregation‐enhanced emission (AEE) characteristics with efficiency of approximately 2 % and up to 8.5 % in solution and crystals, respectively. Two polymorphs of AN‐MA were readily obtained that were able to generate UV emission from individual phenyl rings together with bright blue emission owing to the effective through‐space conjugation. Moreover, p‐RTP with a lifetime of up to approximately 1.6 s was obtained in the crystals. These results not only reveal a new system with both fluorescence and RTP dual emission but also suggest an alternative through‐space conjugation strategy towards pure organic p‐RTP luminogens with tunable emissions.  相似文献   

20.
Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号