首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cytosolic protein delivery remains elusive. The inability of most proteins to cross the cellular membrane is a huge hurdle. Here we explore the unique photothermal properties of gold nanorods (AuNRs) to trigger cytosolic delivery of proteins. Both partners, protein and AuNRs, are modified with a protease-resistant cell-penetrating peptide with nuclear targeting properties to induce internalization. Once internalized, spatiotemporal control of protein release is achieved by near-infrared laser irradiation in the safe second biological window. Importantly, catalytic amounts of AuNRs are sufficient to trigger cytosolic protein delivery. To the best of our knowledge, this is the first time that AuNRs with their maximum of absorption in the second biological window are used to deliver proteins into the intracellular space. This strategy represents a powerful tool for the cytosolic delivery of virtually any class of protein.  相似文献   

2.
Cytosolic protein delivery is a prerequisite for the development of protein therapeutics that act on intracellular targets. Proteins are generally membrane‐impermeable and thus need a carrier such as a polymer to facilitate their internalization. However, the efficient binding of proteins with different isoelectric points to polymeric carriers is challenging. In this study, we designed a coordinative dendrimer to solve this problem. The dendrimers modified with dipicolylamine/zinc(II) complex were capable of binding proteins through a combination of ionic and coordination interactions. The best polymer efficiently delivered 30 cargo proteins and peptides into the cytosol, while maintaining their bioactivity after intracellular release. The removal or replacement of zinc ions in the polymer with other transition‐metal ions lead to significantly decreased efficiency in cytosolic protein delivery. This study provides a new strategy to develop robust and efficient polymers for cytosolic protein delivery.  相似文献   

3.
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.  相似文献   

4.
The delivery of proteins into live cells is a promising strategy for the targeted modulation of protein-protein interactions and the manipulation of specific cellular functions. Cellular delivery can be facilitated by complexing the protein of interest with carrier molecules. Recently, an amphipatic peptide was identified, Pep-1 (KETWWETWWTE WSQPKKKRKV), which crosses the plasma membrane of many cell types to carry and deliver proteins as large as antibodies. Pep-1 effectively delivers proteins in solution; but Pep-1 is not suitable for delivering sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) isolated proteins because Pep-1 complexes with cargo proteins are destroyed by SDS. Here, we report cellular delivery of SDS-PAGE-isolated proteins, without causing cellular damage, by using a nonionic detergent, Triton X-100, as carrier. To determine the specificity of our method, we separated antibodies against different intracellular targets by nonreducing SDS-PAGE. Following electrophoresis, the antibody bands were detected by zinc-imidazole reverse staining, excised, in-gel refolded with Triton X-100, and eluted in detergent-free phosphate-buffered saline. When overlaid on cultured NIH 3T3 cells, the antibodies penetrated the cells localizing to their corresponding intracellular targets. These results are proof-of-principle for the delivery of gel-isolated bioactive proteins into cultured cells and suggest new ways for experimental protein therapy and for studying protein-protein interactions using gel-isolated protein.  相似文献   

5.
Protein delivery is of central importance for both diagnostic and therapeutic applications.However,protein delivery faces challenges including poor endosomal escape and thus limited efficiency.Here,we report the facile construction and screening of a small library of cationic helical polypeptides for cytosolic protein delivery.The library is based on a random copolymer poly(γ-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}esteryl-L-glutamate)-randompoly(γ-6-chlorohexyl-L-glutamate)[P(EG3-r-ClC6)Glu],which is then modified with various pyridine derivatives and alkyl thiols.Flow Cytometry,confocal laser scanning microscopy,and viability assay collaboratively identify two leading polymers,showing efficient delivery of enhanced green fluorescent protein(eGFP)and low cytoto-xicity.This finding is further validated by the cytosolic delivery of RNase A and cytochrome C(Cyt C)to HeLa cells in the viability assay.Together,this work demonstrates that high-throughput screening is an effective and viable approach to the selection of cationic helical polypeptides for the cytosolic delivery of functional proteins.  相似文献   

6.
Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.  相似文献   

7.
Cellular membranes, including the plasma and endosome membranes, are barriers to outside proteins. Various vehicles have been devised to deliver proteins across the plasma membrane, but in many cases, the payload gets trapped in the endosome. Here we designed a photo-responsive phase-separating fluorescent molecule ( PPFM ) with a molecular weight of 666.8 daltons. The PPFM compound condensates as fluorescent droplets in the aqueous solution by liquid-liquid phase separation ( LLPS ), which disintegrate upon photoirradiation with a 405 nm light-emitting diode ( LED ) lamp within 20 min or a 405 nm laser within 3 min. The PPFM coacervates recruit a wide range of peptides and proteins and deliver them into mammalian cells. Photolysis disperses the payload from condensates into the cytosolic space. Altogether, a type of small molecules that are photo-responsive and phase separating are discovered; their coacervates can serve as transmembrane vehicles for intracellular delivery of proteins, whereas photo illumination triggers the cytosolic distribution of the payload.  相似文献   

8.
Hydrogen-bonded organic frameworks (HOFs) are porous nanomaterials that offer exceptional biocompatibility and versatility for integrating proteins for biomedical applications. This minireview concisely discusses recent advancements in the chemistry and functionality of protein-HOF interfaces. It particularly focuses on strategic methodologies, such as the careful selection of building blocks and the genetic engineering of proteins, to facilitate protein-HOF interactions. We examine the role of enzyme encapsulation within HOFs, highlighting its capability to preserve enzyme function, a crucial aspect for applications in biosensing and disease diagnosis. Moreover, we discuss the emerging utility of nanoscale HOFs for intracellular protein delivery, illustrating their applicability as nanoreactors for intracellular catalysis and neuroprotective biorthogonal catalysis within cellular compartments. We highlight the significant advancement of designing biodegradable HOFs tailored for cytosolic protein delivery, underscoring their promising application in targeted cancer therapies. Finally, we provide a perspective viewpoint on the design of biocompatible protein-HOF assemblies, underlining their promising prospects in drug delivery, disease diagnosis, and broader biomedical applications.  相似文献   

9.
Photodynamic therapy typically employs photo-triggered photosensitizers to generate reactive oxygen species to destroy cancer cells. However, the therapeutic effect of photodynamic therapy is often limited owing to the ultrashort diffusion distance of reactive oxygen species and easy efflux of photosensitizers. Herein, we design and synthesize a protein-targeted molecular photosensitizer for highly efficient photodynamic therapy. The designed photosensitizer can covalently bind with the sulfhydryl groups of intracellular proteins to achieve the protein targeting. Under irradiated with near infrared laser, the photosensitizer was locally activated, and the produced reactive oxygen species directly destroy intracellular bioactive proteins, causing cell dysfunction and ultimately inducing cell apoptosis. Significantly, the leakage of molecular photosensitizer is effectually avoided due to the protein targeting. In vivo experimental results indicated that the effect of treatment was efficiently enhanced with the protein-targeted strategy. This work can offer new insights for designing protein-based therapeutic drugs.  相似文献   

10.
Protein pharmaceuticals show great therapeutic promise, but effective intracellular delivery remains challenging. To address the need for efficient protein transduction systems, we used a magnetic nanogel chaperone (MC): a hybrid of a polysaccharide nanogel, a protein carrier with molecular chaperone‐like properties, and iron oxide nanoparticles, enabling magnetically guided delivery. The MC complexed with model proteins, such as BSA and insulin, and was not cytotoxic. Cargo proteins were delivered to the target HeLa cell cytosol using a magnetic field to promote movement of the protein complex toward the cells. Delivery was confirmed by fluorescence microscopy and flow cytometry. Delivered β‐galactosidase, inactive within the MC complex, became enzymatically active within cells to convert a prodrug. Thus, cargo proteins were released from MC complexes through exchange interactions with cytosolic proteins. The MC is a promising tool for realizing the therapeutic potential of proteins.  相似文献   

11.
Summary: The development of suitable delivery systems for intracellular delivery of proteins, peptides and other bioactive materials opens the possibility to establish refined strategies for small drug delivery, gene delivery and vaccination. We present the assembly of advanced drug delivery systems from tailored building blocks to scaffolds and bioactive cargos to afford targeting and transport across biological barriers. In particular, the utilization of novel molecular transporter will advance the bioavailability of small and macromolecular drugs that show targeted intracellular delivery.  相似文献   

12.
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications—transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.  相似文献   

13.
The use of nanoparticle‐stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine‐functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self‐assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90 % knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo‐like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.  相似文献   

14.
Protein assemblies with cage-like structures are found widely in Nature with a large diversity of structural properties and functionalities. These architectures provide both inspiration for biomimetic design and templates for bioengineering. Inspired by the native utility of protein nanocage (PNC) architectures for cargo loading, transport, and protection, significant effort has been put into the development of PNC-based biomedical applications, including therapeutic delivery. This review summarizes the designs of PNC architectures for the delivery of therapeutic proteins (categorized by the type of therapeutics) and highlights the achieved or potential advantages of the PNCs as delivery systems for these proteins.  相似文献   

15.
Proteomics is a powerful tool to screen brain protein expression but the methodology is hampered by low abundance of proteins or compartmentalization or overload of high-abundance proteins. It was therefore the aim of the study to determine the expression of brain proteins by using enriched cellular subfractions and pre-electrophoretic chromatographical separation of brain homogenates. We used two-dimensional electrophoresis with subsequent matrix-assisted laser desorption/ionization (MALDI) detection and characterization of brain proteins. Subfractionation into cytosolic, mitochondrial and microsomal compartments was performed by ultracentrifugation. Pre-electrophoretic fractionation of the cytosolic fractions was carried out by ion exchange column chromatography. We detected and identified a large series of 437 proteins in rat brain and have shown proteins specific for the individual subcellular compartments. These proteins included housekeeping, signaling, cytoskeletal, intermediary metabolism, antioxidant proteins on the one and neuron and synaptosomal specific proteins on the other hand. Using fractionations of brain homogenates we were able to improve the power of the method on forming the basis for brain protein expressional studies and providing a reference map as a powerful tool for the neuroscientist.  相似文献   

16.
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small‐molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS–NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell‐penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione‐triggered biodegradation and of native, functional proteins into the mitochondria.  相似文献   

17.
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small‐molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS–NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell‐penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione‐triggered biodegradation and of native, functional proteins into the mitochondria.  相似文献   

18.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

19.
Incorporation of chemical probes into proteins is a powerful way to elucidate biological processes and to engineer novel function. Here we describe an approach that allows ligation of synthetic molecules to target proteins in an intracellular environment. A cellular protein is genetically tagged with one-half of a split intein. The complementary half is linked in vitro to the synthetic probe, and this fusion is delivered into cells using a transduction peptide. Association of the intein halves in the cytosol triggers protein trans-splicing, resulting in the ligation of the probe to the target protein through a peptide bond. This process is specific and applicable to cytosolic and integral membrane proteins. The technology should allow cellular proteins to be elaborated with a variety of abiotic probes.  相似文献   

20.
Protein cages, including viral capsids, ferritins, and heat shock proteins (Hsps), can serve as nanocontainers for biomedical applications. They are genetically and chemically malleable platforms, with potential as therapeutic and imaging agent delivery systems. Here, both genetic and chemical strategies were used to impart cell-specific targeting to the Hsp cage from Methanococcus jannaschii. A tumor vasculature targeting peptide was incorporated onto the exterior surface of the Hsp cage. This protein cage bound to alpha(v)beta(3) integrin-expressing cells. Cellular tropism was also imparted by conjugating anti-CD4 antibodies to the exterior of Hsp cages. These Ab-Hsp cage conjugates specifically bound to CD4(+) cells. Protein cages have the potential to simultaneously incorporate multiple functionalities, including cell-specific targeting, imaging, and therapeutic agent delivery. We demonstrate the simultaneous incorporation of two functionalities, imaging and cell-specific targeting, onto the Hsp protein cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号