首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4,4′-Bipyridinium-based tetracationic cyclophanes containing a 2,5-dimethoxy-1,4-xylyl unit were synthesized by using either m-terphenyl building blocks or incorporating a 4-hydroxy benzyl spacer between the complementary subunits. The cyclophanes show weak intramolecular charge-transfer (CT) bands in the visible region and one of the cyclophanes formed a green-coloured CT complex with ferrocene with an association constant (K a) of 6.3?M?1. The electrochemical parameters obtained for the cyclophanes indicate that all the redox processes are reversible.  相似文献   

2.
In aqueous media the deep-cavity cavitand octaacid 1 forms stable dimeric molecular capsules 1(2), which are stabilized by hydrophobic effects. In this work we investigate the binding interactions in aqueous solution between these capsules and the redox active guests, ferrocene (Fc) and three 4,4'-bipyridinium (viologen) dications: methyl viologen (MV(2+)), ethyl viologen (EV(2+)), and butyl viologen (BV(2+)). Using NMR spectroscopic and electrochemical techniques we clearly show that the hydrophobic Fc guest is encapsulated inside 1(2). An interesting effect of this encapsulation is that the reversible voltammetric response of Fc is completely eliminated when it resides inside the 1(2) capsular assembly, a finding that is attributed to very slow electrochemical kinetics for the oxidation of Fc@1(2). Diffusion coefficient measurements (PGSE NMR spectroscopy) reveal that all three viologen guests are strongly bound to the dimeric capsules. However, the (1)H NMR spectroscopic data are not consistent with encapsulation and the measured diffusion coefficients indicate that two viologen guests can strongly associate with a single dimeric capsule. Furthermore, the (V(2+))(2)*1(2) complex is capable of encapsulating ferrocene, clearly suggesting that the viologen guests are bound externally, via coulombic interactions, to the anionic polar ends of the capsule. The electrochemical kinetic rate constants for the reduction of the viologen residue in the V(2+)*1(2) complexes were measured and found to be substantially lower than those for the free viologen guests.  相似文献   

3.
Bisbiphenylchromium(I) and ferrocene are shown to represent suitable reference redox systems in a number of non-aqueous solvents. The difference of their half-wave potentials is nearly equal in each solvent, namely between 1.12 and 1.13 V. Specific interactions are involved between ferriceniumion and water. The extrapolated half-wave potential of bisbiphenylchromium(I) (–0.78±0.04 V vs. sat. Ag/AgCl-electrode) is not substantially influenced by water.

Mit 1 Abbildung  相似文献   

4.
A series of ferrocene derivatives, which have diverse redox potentials modulated by functional groups, have been synthesized as potential ‘multi‐potential’ probes. A Hammett constant analysis revealed a linear free energy correlation between the redox potentials and the electron density of the ferrocene derivatives as determined by the choice of functional group used to modify the ferrocene core.  相似文献   

5.
Receptors ferrocene–triazole–pyridine triads assembled with Zn(II) or Cd(II) metal cations behave as chemosensor molecules for HSO4 anions through electrochemical and optical channels: the redox peak of the ferrocene/ferrocenium redox couple is shifted cathodically by 72–53 mV, and a new absorption band appeared in the UV–vis spectrum upon complexation with the HSO4 anion. Association constants, detection limits and stoichiometries of the recognition processes have been determined, whereas 1H NMR experiments and density functional theory calculations are used to suggest the plausible binding mode taking place in the new supramolecular assembly formed.  相似文献   

6.
Solid lipid nanoparticles (SLN) are widely used in pharmaceutical and cosmetic applications. SLN, incorporating approximately 105 ferrocene units, as core-enriched redox active nanoparticles, were used as a model for probing interactions with solid-supported lipid membranes. Resonance Enhanced Surface Impedance Spectroscopy (RESI) is shown as a sensitive technique for monitoring real time interactions of the soft redox nanoparticles. Cyclic voltammetry is compared as an end of experiment technique.  相似文献   

7.
Thermosensitive and redox-active polymers were prepared by copolymerization of N-ethyl- or N,N-diethylacrylamides with vinylferrocene (VFc). LCST (lower critical solution temperature) of the aqueous copolymer solution was decreased by increasing the ferrocene content in the copolymer. The oxidation of ferrocene led to a significant increase in LCST due to the transition from hydrophobic to hydrophilic character of the ferrocene moiety in the copolymer. The ferrocene content in the copolymer increases with increasing differences between the LCST's of the oxidation and reduction states. The transition could be made reversible by redox reaction using L -ascorbic acid as an oxidant and cerium sulfate as a reductant. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1967–1972, 1997  相似文献   

8.
Self‐assembly and characterization of novel heterodimeric diphosphine capsules formed by multiple ionic interactions and composed of one tetracationic diphosphine ligand and one complementary tetraanionic calix[4]arene are described. Encapsulation of a palladium atom within a diphosphine capsule is achieved successfully by using the metal complex of the tetracationic diphosphine ligand for the assembly process. In this templated approach to metal encapsulation, the transition‐metal complex is an integrated part of the capsule with the transition metal located inside the capsule and is not involved in the assembly process. We present two approaches for capsule assembly by mixing solutions of the precharged building blocks in methanol and mixing solutions of the neutral building blocks in methanol. The scope of the diphosphine capsules and the metallodiphosphine capsules is easily extended by applying tetracationic diphosphine ligands with different backbones (ethylene, diphenyl ether, and xanthene) and cationic binding motifs (p‐C6H4‐CH2‐ammonium, m‐C6H4‐ammonium, and m‐C6H4‐guanidinium). These tetracationic building blocks with different flexibilities and shapes readily associate into capsules with the proper capsular structure, as is indicated by 1H NMR spectroscopy, 1D NOESY, ESI‐MS, and modeling studies.  相似文献   

9.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

10.
A comprehensive investigation of the complementary H‐bonding‐mediated self‐assembly between dipyrrolo[2,3‐b:3′,2′‐e]pyridine (P2P) electron donors and naphthalenediimide/perylenediimide (NDI/PDI) acceptors is reported. The synthesis of parent P2P and several aryl‐substituted derivatives is described, along with their optical, redox, and single‐crystal packing characteristics. The dual functionality of heteroatoms in the P2P/NDI(PDI) assembly, which act as proton donors/acceptors and also contribute to π‐conjugation, leads to H‐bonding‐induced perturbation of electronic levels. Concentration‐dependent NMR and UV/Vis spectroscopic studies revealed a cooperative effect of H‐bonding and π–π stacking interactions. This H‐bonding‐mediated co‐assembly of donor (D) and acceptor (A) components leads to a new charge‐transfer (CT) absorption that can be controlled throughout the visible range. The electronic interactions between D and A were further investigated by time‐dependent DFT, which provided insights into the nature of the CT transition. Electropolymerization of difuryl‐P2P afforded the first conjugated polymer incorporating H‐bonding recognition units in its main chain.  相似文献   

11.
《Electroanalysis》2006,18(24):2397-2404
Interfacial assemblies capable of determining glutamate by redox catalysis are prepared by electrostatic assembly of alternating layers of ferrocene poly(allylamine) polymer and glutamate oxidase on a gold electrode. Deposition of the polymer was confirmed in cyclic voltammetry measurements by the presence of a surface wave corresponding to the oxidation of the ferrocene group. In the presence of glutamate in the adjacent electrolyte solution, the current increases and approaches a pseudosteady state, consistent with redox catalysis. Electrodes modified with glutamate oxidase had a linear response to glutamate up to 0.0045 M with sensitivity of 20 μA/cm2 and a limit of detection of 31.4 μM glutamate. An apparent Michaelis–Menten constant of 0.40(±0.13) mM for the confined glutamate oxidase was determined for this assembly. When used in flow‐injection experiments, glucose oxidase modified electrodes responded to transient zones of glucose; however, the detection limits of the assemblies to the flowing stream were substantially higher than found for measurements on static solutions.  相似文献   

12.

Abstract  

New ferrocenyl ketones were obtained as precursors of novel π-conjugated ferrocene-dithiafulvalene (Fc-DTF) and π-extended-ferrocenedithia-fulvalenes (π-exFc-DTF) as electron-donor conducting materials from ferrocene by a direct aroylation process using the Friedel–Crafts reaction. Novel Fc-DTF conjugates were synthesized using the Wittig–Horner reaction and their structures were determined. The redox behavior of the ferrocenyl carbonyl compounds Fc-DTF and Fc-π-exDTF was investigated in comparison to the parent ferrocene by means of cyclic voltammetry. A one-electron redox behavior was observed for carbonylferrocenes as one wave potential, while a two-electron process was observed as two oxidation waves for the conjugates. Introduction of electron-withdrawing groups led to increasing E pa values and decreasing ΔE p values. The UV–Vis spectra of some compounds were studied in comparison with ferrocene. The absorption spectra showed a red-shift with a slight increase in the absorption intensities.  相似文献   

13.
Employing bis(p‐sulfonatocalix[4]arenes) (bisSC4A) and N′,N′′hexamethylenebis(1‐methyl‐4,4′‐bipyridinium) (HBV4+) as monomer building blocks, the assembly morphologies can be modulated by cucurbit[n]uril (CB[n]) (n=7, 8), achieving the interesting topological conversion from cyclic oligomers to linear polymers. The binary supramolecular assembly fabricated by HBV4+ and bisSC4A units, forms an oligomeric structure, which was characterized by NMR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and gel permeation chromatography (GPC) experiments. The ternary supramolecular polymer participated by CB[8] is constructed on the basis of host–guest interactions by bisSC4A and the [2]pseudorotaxane HBV4+@CB[8], which is characterized by means of AFM, DLS, NMR spectroscopy, thermogravimetric analysis (TGA), UV/Vis spectroscopy, and elemental analysis. CB[n] plays vital roles in rigidifying the conformation of HBV4+, and reinforcing the host–guest inclusion of bisSC4A with HBV4+, which prompts the formation of a linear polymer. Moreover, the CB[8]‐participated ternary assembly could disassemble into the molecular loop HBV2+@CB[8] and free bisSC4A after reduction of HBV4+ to HBV2+, whereas the CB[7]‐based assembly remained unchanged after the reduction. CB[8] not only controlled the topological conversion of the supramolecular assemblies, but also improved the redox‐responsive assembly/disassembly property practically.  相似文献   

14.
The realization of controllable multicomponent self‐assembly through reversible supramolecular interactions is a challenging goal, and is an important strategy for the fabrication of switchable nanomaterials. Herein we show that the self‐assembly of TiO2 nanoparticles (NP) functionalized with methyl viologen can be controlled both by light irradiation and chemical reduction through cucurbit[8]uril‐enhanced radical cation dimerization interactions. Moreover, the controlled assembly and disassembly of this system are accompanied by switchable photocatalytic activity of the TiO2 NPs, which shows potential application as a novel smart and recyclable photocatalyst.  相似文献   

15.
The structural modifications accompanying the redox switching of a short ferrocene derivative [(C5H5)Fe(C5H4)CO(CH2)5SH] monolayer self-assembled on gold are investigated using ellipsometry. Average values for the complex refractive index and thickness of the monolayer are estimated from ex situ and in situ experiments. The changes in the optical parameters are monitored during potential cycling and between two potential values, where the ferrocene is in its either reduced or oxidized form. The optical changes point to an increase of 1 to 2 Å in the monolayer thickness as the ferrocene is oxidized to the ferricinium cation. The thickness variation is in very good agreement with the rotation of the ferrocene rings towards a more perpendicular position relative to the electrode surface. The changes in orientation are reversible when the potential is cycled. However, instability of the monolayer is observed when the modified electrode is polarized for a few minutes at potentials where the monolayer is oxidized and then returned to the reduced form. This instability is associated with the ferrocene moiety, since a loss of electroactivity is simultaneously detected by cyclic voltammetry.  相似文献   

16.
In an effort to develop a new class of redox‐active chiral Lewis pairs, pyridine and borane moieties with different steric and electronic properties were introduced onto a planar chiral 1,2‐disubstituted ferrocene framework. Metathesis of lithiated, stannylated, or mercuriated pyridylferrocenes with boron halides afforded (pR)‐2‐[bis(pentafluorophenyl)boryl]‐1‐(3,5‐dimethylpyrid‐2‐yl)ferrocene ( 4‐Pf ), (pR)‐2‐[dimesitylboryl]‐1‐(3,5‐dimethylpyrid‐2‐yl)ferrocene ( 4‐Mes ), (pS)‐2‐(bis(pentafluorophenyl)boryl)‐1‐(2‐trimethylsilylpyrid‐6‐yl)ferrocene ( 5‐Pf ), or (pS)‐2‐[dimesitylboryl]‐1‐(2‐trimethylsilylpyrid‐6‐yl)ferrocene ( 5‐Mes ). The borylated products were analyzed by multinuclear NMR spectroscopy, HRMS, and single‐crystal X‐ray diffraction. Chiral HPLC and optical‐rotation measurements were employed to assess the stereoselectivity of the borylation process and to establish the correct stereochemical assignments. The strength of the B–N interactions were investigated in solution and in the solid state. Compounds 4‐Pf and 4‐Mes formed robust ‘closed’ B?N heterocyclic systems that proved to be perfectly stable to air and moisture, whereas 5‐Pf established a dynamic equilibrium, in which the B?N heterocycle was observed exclusively at room temperature, but opened up at high temperature according to 19F NMR exchange spectroscopy data. As a consequence, 5‐Pf reacted readily with a molecule of water to generate a ring‐opened pyridinium borate. The combination of bulky borane and bulky pyridyl groups in 5‐Mes led to a completely ‘open’ frustrated Lewis pair system with uncomplexed pyridine and borane groups, even at room temperature. Electrochemical studies were performed and the effect of preparative ferrocene oxidation on the structural features was also explored.  相似文献   

17.
Biologically relevant hydrophilic molecules rarely interact with hydrophobic compounds and surfaces in water owing to effective hydration. Nevertheless, herein we report that the hydrophobic cavity of a polyaromatic capsule, formed through coordination‐driven self‐assembly, can encapsulate hydrophilic oligo(lactic acid)s in water with relatively high binding constants (up to Ka=3×105 m −1). X‐ray crystallographic and ITC analyses revealed that the unusual host–guest behavior is caused by enthalpic stabilization through multiple CH–π and hydrogen‐bonding interactions. The polyaromatic cavity stabilizes hydrolyzable cyclic di(lactic acid) and captures tetra(lactic acid) preferentially from a mixture of oligo(lactic acid)s even in water.  相似文献   

18.
Abstract  New ferrocenyl ketones were obtained as precursors of novel π-conjugated ferrocene-dithiafulvalene (Fc-DTF) and π-extended-ferrocenedithia-fulvalenes (π-exFc-DTF) as electron-donor conducting materials from ferrocene by a direct aroylation process using the Friedel–Crafts reaction. Novel Fc-DTF conjugates were synthesized using the Wittig–Horner reaction and their structures were determined. The redox behavior of the ferrocenyl carbonyl compounds Fc-DTF and Fc-π-exDTF was investigated in comparison to the parent ferrocene by means of cyclic voltammetry. A one-electron redox behavior was observed for carbonylferrocenes as one wave potential, while a two-electron process was observed as two oxidation waves for the conjugates. Introduction of electron-withdrawing groups led to increasing E pa values and decreasing ΔE p values. The UV–Vis spectra of some compounds were studied in comparison with ferrocene. The absorption spectra showed a red-shift with a slight increase in the absorption intensities. Graphical abstract     相似文献   

19.
The ferrocene/ferricenium redox system plays a significant role in biological oxidation, reduction and free-radical reactions. Of particular interest are the findings of earlier investigations which showed certain water-soluble ferricenium salts to possess appreciable antiproliferative activity against various murine tumor lines and a xenografted human colorectal adenocarcinoma. Solubility in water, a prerequisite for efficacious transport and dissipation in central circulation, was then proposed as a principal requirement for the ferrocene complex system to exert antineoplastic activity irrespective of the oxidation state in which it is administered. In order to shed more light on this question, we decided to investigate the antiproliferative properties of polymer–ferrocene conjugates containing the metal complex in the non-oxidized (ferrocene) form while fulfilling the critical requirement of water solubility. To this end, five selected, water-soluble conjugates, synthesized by reversible coupling of 4-ferrocenylbutanoic acid to variously structured polyaspartamides featuring pendant primary amino groups as coupling sites, were tested in vitro against cultured HeLa cells at concentrations up to 50 µg Fe ml−1. Optimal antiproliferative activities, with IC50 in the range of 2–7 µg Fe ml−1, were determined for three compounds possessing tertiary-amine functions susceptible to protonation at physiological pH. Lower activities (IC50 = 45–60 µg Fe ml−1) were demonstrated for two poly(ethylene oxide)-containing conjugates. However, no reasonable structure–performance relationships can be derived at this stage from the small number of compounds tested. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
The syntheses and characterization of novel biferrocene trinuclear complexes for Schiff base ligand, S-methyl-N-(ferrocenyl-1-methyl-methylidene)dithiocarbazate (hereafter abbreviate as HL), are described. X-ray diffraction studies established the structures of the palladium complex, PdL22 and the copper complex, CuL23. The geometry of Pd(II) in 2 is close to square planar and in novel cis-configuration with two ferrocene moieties in the same side, while that of Cu(II) in 3 is close to tetrahedral configuration. Electrochemical measurements suggest that the distorted square planar configuration of the Ni(II) and Pd(II) moieties, can effectively transmit the redox effects of the ferrocene moieties, while the distorted tetrahedral configuration of Cu(II) complex can not transmit the redox effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号