首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of iron(II) complexes [Fe(T(pt-Bu,i-Pr))(OH)] (1a, Tp(t-Bu,i-Pr) = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me2BPMCN)(OTf)2] (1b, 6-Me2BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L8Py2)(OTf)](OTf) (1c, L8Py2 = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin FeIII-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes (Rohde, J.-U.; et al. J. Am. Chem. Soc. 2004, 126, 16750-16761). These include (1) an intense 1s --> 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86-1.96 A Fe-OOR bond, compared to the 1.78 A Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin FeIII-OOR species.  相似文献   

2.
The mixed N3S(thiolate) ligand 1-[bis[2-(pyridin-2-yl)ethyl]amino]-2-methylpropane-2-thiol (Py2SH) was used in the synthesis of four iron(II) complexes: [(Py2S)FeCl] (1), [(Py2S)FeBr] (2), [(Py2S)4Fe5II(mu-OH)2](BF4)4 (3), and [(Py2S)2Fe2II(mu-OH)]BF4 (4). The X-ray structures of 1 and 2 revealed monomeric iron(II)-alkylthiolate complexes with distorted trigonal-bipyramidal geometries. The paramagnetic 1H NMR spectra of 1 and 2 display resonances from delta = -25 ppm to +100 ppm, consistent with a high-spin iron(II) ion (S = 2). Spectral assignments were made on the basis of chemical shift information and T1 measurements and show the monomeric structures are intact in solution. To provide entry into hydroxide-containing complexes, a novel synthetic method was developed involving strict aprotic conditions and limiting amounts of H2O. Reaction of Py2SH with NaH and Fe(BF4)2.6 H2O under aprotic conditions led to the isolation of the pentanuclear, mu-OH complex 3, which has a novel dimer-of-dimers type structure connected by a central iron atom. Conductivity data on 3 show this structure is retained in CH2Cl2. Rational modification of the ligand-to-metal ratio allows control over the nuclearity of the product, yielding the dinuclear complex 4. The X-ray structure of 4 reveals an unprecedented face-sharing, biooctahedral complex with an [S2O] bridging arrangement. The magnetic properties of 3 and 4 in the range 1.9-300 K were successfully modeled. Dinuclear 4 is antiferromagnetically coupled [J = -18.8(2) cm(-1)]. Pentanuclear 3 exhibits ferrimagnetic behavior, with a high-spin ground state of S(T) = 6, and was best modeled with three different exchange parameters [J = -15.3(2), J' = -24.7(3), and J' = -5.36(7) cm(-1)]. DFT calculations provided good support for the interpretation of the magnetic properties.  相似文献   

3.
A series of iron(II) bis(triflate) complexes containing tripodal tetradentate nitrogen ligands with pyridine and dimethylamine donors of the type [N(CH(2)Pyr)(3-n)()(CH(2)CH(2)NMe(2))(n)] [n = 0 (tpa, 1), n = 1 (iso-bpmen, 3), n = 2 (Me(4)-benpa, 4), n = 3 (Me(6)-tren, 5)] and the linear tetradentate ligand [(CH(2)Pyr)MeN(CH(2)CH(2))NMe(CH(2)Pyr), (bpmen, 2)] has been prepared. The preferred coordination geometry of these complexes in the solid state and in CH(2)Cl(2) solution changes from six- to five-coordinate in the order from 1 to 5. In acetonitrile, the triflate ligands of all complexes are readily displaced by acetonitrile ligands. The complex [Fe(1)(CH(3)CN)(2)](2+) is essentially low spin at room temperature, whereas ligands with fewer pyridine donors increase the preference for high-spin Fe(II). Both the number of pyridine donors and the spin state of the metal center strongly affect the intensity of a characteristic MLCT band around 400 nm. The catalytic properties of the complexes for the oxidation of alkanes have been evaluated, using cyclohexane as the substrate. Complexes containing ligands 1-3 are more active and selective catalysts, possibly operating via a metal-based oxidation mechanism, whereas complexes containing ligands 4 and 5 give rise to Fenton-type chemistry.  相似文献   

4.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

5.
A series of iron(II)-bis(triflate) complexes [Fe(L)(OTf)2] containing linear tetradentate bis(quinolyl)-diamine and bis(quinolylmethyl)-diamine ligands with a range of ligand backbones has been prepared. The coordination geometries of these complexes have been investigated in the solid state by X-ray crystallography and in solution by 1H and 19F NMR spectroscopy. Because of the labile nature of high-spin iron(II) complexes in solution, dynamic equilibria of complexes with different coordination geometries (cis-alpha, cis-beta, and trans) are observed with certain ligand systems. In these cases, the geometry observed in the solid-state does not necessarily represent the only or even the major geometry present in solution. The ligand field strength in the various complexes has been investigated by variable-temperature (VT) magnetic moment measurements and by UV-vis spectroscopy. The strongest ligand field is observed with the most rigid ligand that generates [Fe(L)(OTf)2] complexes with a cis-alpha coordination geometry, and the corresponding [Fe(L)(CH3CN)2]2+ complex displays spin crossover behavior. The catalytic properties of the complexes for the oxidation of cyclohexane have been investigated using hydrogen peroxide as the oxidant. An increased flexibility in the ligand results in a weaker ligand field, which increases the lability of the complexes. The activity and selectivity of the catalysts appear to be related to the strength of the ligand field and the stability of the catalyst.  相似文献   

6.
The new iron(II)-thiolate complexes [((iPr)BIP)Fe(II)(SPh)(Cl)] (1) and [((iPr)BIP)Fe(II)(SPh)(OTf)] (2) [BIP = bis(imino)pyridine] were prepared as models for cysteine dioxygenase (CDO), which converts Cys to Cys-SO(2)H at a (His)(3)Fe(II) center. Reaction of 1 and 2 with O(2) leads to Fe-oxygenation and S-oxygenation, respectively. For 1 + O(2), the spectroscopic and reactivity data, including (18)O isotope studies, are consistent with an assignment of an iron(IV)-oxo complex, [((iPr)BIP)Fe(IV)(O)(Cl)](+) (3), as the product of oxygenation. In contrast, 2 + O(2) results in direct S-oxygenation to give a sulfonato product, PhSO(3)(-). The positioning of the thiolate ligand in 1 versus 2 appears to play a critical role in determining the outcome of O(2) activation. The thiolate ligands in 1 and 2 are essential for O(2) reactivity and exhibit an important influence over the Fe(III)/Fe(II) redox potential.  相似文献   

7.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

8.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

9.
He C  Lippard SJ 《Inorganic chemistry》2000,39(23):5225-5231
The synthesis of dicopper(I) complexes [Cu2(BBAN)(MeCN)2](OTf)2 (1), [Cu2(BBAN)(py)2](OTf)2 (2), [Cu2(BBAN)(1-Me-BzIm)2](OTf)2 (3), [Cu2(BBAN)(1-Me-Im)2](OTf)2 (4), and [Cu2(BBAN)(mu-O2CCPh3)](OTf) (5), where BBAN = 2,7-bis((dibenzylamino)methyl)-1,8-naphthyridine, py = pyridine, 1-Me-Im = 1-methylimidazole, and 1-Me-BzIm = 1-methylbenzimidazole, are described. Short copper-copper distances ranging from 2.6151(6) to 2.7325(5) A were observed in the solid-state structures of these complexes depending on the terminal ligands used. The cyclic voltammogram of compound 5 dissolved in THF exhibited a reversible redox wave at E1/2 = -25 mV vs Cp2Fe+/Cp2Fe. When complex 5 was treated with 1 equiv of silver(I) triflate, a mixed-valence dicopper(I,II) complex [Cu2(BBAN)(mu-O2CCPh3)(OTf)](OTf) (6) was prepared. A short copper-copper distance of 2.4493(14) A observed from the solid-state structure indicates the presence of a copper-copper interaction. Variable-temperature EPR studies showed that complex 6 has a fully delocalized electronic structure in frozen 2-methyltetrahydrofuran solution down to liquid helium temperature. The presence of anionic ligands seems to be an important factor to stabilize the mixed-valence dicopper(I,II) state. Compounds 1-4 with neutral nitrogen-donor terminal ligands cannot be oxidized to the mixed-valence analogues either chemically or electrochemically.  相似文献   

10.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

11.
The reaction of [Fe(II)(beta-BPMCN)(OTf)2] (1, BPMCN = N,N'-bis(2-pyridylmethyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane) with tBuOOH at low-temperature yields alkylperoxoiron(III) intermediates 2 in CH2Cl2 and 2-NCMe in CH3CN. At -45 degrees C and above, 2-NCMe converts to a pale green species 3 (lambda(max) = 753 nm, epsilon = 280 M(-1) cm(-1)) in 90% yield, identified as [Fe(IV)(O)(BPMCN)(NCCH3)]2+ by comparison to other nonheme [Fe(IV)(O)(L)]2+ complexes. Below -55 degrees C in CH2Cl2, 2 decays instead to form deep turquoise 4 (lambda(max) = 656, 845 nm; epsilon = 4000, 3600 M(-1) cm(-1)), formulated to be an unprecedented alkylperoxoiron(IV) complex [Fe(IV)(BPMCN)(OH)(OOtBu)]2+ on the basis of M?ssbauer, EXAFS, resonance Raman, NMR, and mass spectral evidence. The reactivity of 1 with tBuOOH in the two solvents reveals an unexpectedly rich iron(IV) chemistry that can be supported by the BPMCN ligand.  相似文献   

12.
Linear tetradentate N2Py2 ligands can coordinate to an octahedral FeII center in three possible topologies (cis-alpha, cis-beta, and trans). While for the N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) complex, only the cis-alpha topology has been observed, for N,N'-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (bpmcn) both cis-alpha and cis-beta isomers have been reported. To date, no facile interconversion between cis-alpha and cis-beta topologies has been observed for ironII complexes even at high temperatures. However, this work provides evidence for facile interconversion in solution of cis-alpha, cis-beta, and trans topologies for [Fe(bpmpn)X2] (bpmpn=N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane; X=triflate, CH3CN) complexes. As reported previously, the catalytic behavior of cis-alpha and cis-beta isomers of [Fe(bpmcn)(OTf)2] with respect to olefin oxidation depends dramatically on the geometry adopted by the iron complex. To establish a general pattern of the catalysis/topology dependence, this work presents an extended comparison of the catalytic behavior for oxidation of olefins of a family of [Fe(N2py2)] complexes that present different topologies. 18O labeling experiments provide evidence for a complex mechanistic landscape in which several pathways should be considered. Complexes with a trans topology catalyze only non-water-assisted epoxidation. In contrast, complexes with a cis-alpha topology, such as [Fe(bpmen)X2] and [Fe(alpha-bpmcn)(OTf)2], can catalyze both epoxidation and cis-dihydroxylation through a water-assisted mechanism. Surprisingly, [Fe(bpmpn)X2] and [Fe(beta-bpmcn)(OTf)2] catalyze epoxidation via a water-assisted pathway and cis-dihydroxylation via a non-water-assisted mechanism, a result that requires two independent and distinct oxidants.  相似文献   

13.
New metal complexes with pentagonal-bipyramidal geometry have been synthesized with the chiral, pentadentate bis(oxazoline) ligand (R,R)-1, including the metal ions magnesium(II), iron(II), and cadmium(II). In the solid state, a complete transfer of chirality from the ligand is observed to exclusively yield enantiomerically pure P-helical, isostructural pentagonal bipyramidal complexes, as determined by X-ray analysis of four compounds. This uncommon coordination geometry is likely to be driven by pi-pi-stacking of the terminal phenyl groups of the linear ligands. The complex cations in [Fe((R,R)-1)(H2O)2](ClO4)2 (3), [Cd((R,R)-1)(H2O)2](ClO4)2 (4), and [Mg((R,R)-1)(H2O)2](ClO4)2 (5) are mononuclear with the two apical positions of the pentagonal bipyramide occupied by two water molecules. In contrast, the structure in dinuclear [Cd((R,R)-1)(MeOH)(mu-I)(CdI3)] (2c) can be described as pentagonal-bipyramidal around cadmium with MeOH and distorted-tetrahedral CdI4 (via one bridging iodo ligand) completing the coordination sphere in axial positions. The crystal packing of 3-5 shows a highly ordered orientation of the mononuclear helical cations into one-dimensional chains along the crystallographic axis a, stabilized by intermolecular pi-pi-stacking. In contrast, the dinuclear helices in 2c are tilted relative to one another, and consequently, directed, one-dimensional helicity in the solid state is not observed. Studies using a combination of mass spectrometry and NMR and CD spectroscopy indicate the presence of only one C2-symmetrical, mononuclear species in acetonitrile for each case, suggesting the formation of diastereo- and enantiomerically pure complexes also in the solution state. All compounds exhibit a very characteristic and almost identical CD pattern between 200 nm and 300 nm. This signal can be attributed to the P-helical, pentagonal arrangement of the ligand.  相似文献   

14.
Reaction of the diamidozirconium complex [Zr(N2(TBS)Npy)(NMe2)2] (1) (N2(TBS)Npy = CH3C(C5H4N)(CH2NSiMe2tBu)2) or the diamidohafnium complex [Hf(N2(TBS)Npy)(NMe2)2] (2) with one molar equiv. of 1-aminopyridinium triflate in the presence of one equiv. of pyridine gave the corresponding (1-pyridinio)imido complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (3) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (4). These were converted to the acetylide complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (5) and [Hf(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (6) by reaction with lithium phenylacetylide and substitution of the triflato ligand. Upon reaction of 3 and 4 with one molar equivalent of R-NC (R = tBu, Cy, 2,6-xyl), N-N bond cleavage in the (1-pyridinio)imido unit took place and the respective carbodiimido complexes [M(N2(TBS)Npy](N=C=NR)(OTf)(py)] (7-12) were formed instantaneously. A similar type of reaction with CO gave the isocyanato complex [Zr(N2(TBS)Npy](NCO)(OTf)(py)] (13). Finally, the abstraction of the pyridine ligand in compounds 3 and 4 with B(C6F5)3 led to the formation of the triflato-bridged dinuclear complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (14) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (15).  相似文献   

15.
The novel tripodal ligand N-(bis(2-pyridyl)methyl)-2-pyridinecarboxamide (Py3AH) affords monomeric and dimeric copper(II) complexes with coordinated carboxamido nitrogens. Although many chloro-bridged dimeric copper(II) complexes are known, [Cu(Py3A)(Cl)] (1) remains monomeric and planar with a pendant pyridine and does not form either a chloro-bridged dimer or the ligand-shared dimeric complex [Cu(Py3A)(Cl)]2 (4) in solvents such as CH3CN. When 1 is dissolved in alcohols, square pyramidal alcohol adducts [Cu(Py3A)(Cl)(CH3OH)] (2) and [Cu(Py3A)(Cl)(C2H5OH)] (3) are readily formed. In 2 and 3, the ROH molecules are bound at axial site of copper(II) and the weak axial binding of the ROH molecule is strengthened by intramolecular hydrogen bonding between ROH and the pendant pyridine nitrogen. Two ligand-shared dimeric species [Cu(Py3A)(Cl)]2 (4) and [Cu(Py3A)]2(ClO4)2 (5) have also been synthesized in which the pendant pyridine of one [Cu(Py3A)] unit completes the coordination sphere of the other [Cu(Py3A)] neighbor. These ligand-shared dimers are obtained in aqueous solutions or in complete absence of chloride in the reaction mixtures.  相似文献   

16.
Tetradentate bis(aminophenolate) ligands H(2)salan(X) and H(2)bapen(X) (where X refers to the para-phenolate substituent = H, Me, F, Cl) react with [Fe{N(SiMe(3))(2)}(2)] to form iron(II) complexes, which in the presence of suitable donor ligands L (L = pyridine or THF) can be isolated as the complexes [Fe(salan(X))(L)(2)] and [Fe(bapen(X))(L)(2)]. In the absence of donor ligands, either mononuclear complexes, for example, [Fe(salan(tBu,tBu))], or dinuclear complexes of the type [Fe(salan(X))](2) are obtained. The dynamic coordination behavior in solution of the complexes [Fe(salan(F))(L)(2)] and [Fe(bapen(F))(L)(2)] has been investigated by VT (1)H and (19)F NMR spectroscopy, which has revealed equilibria between isomers with different ligand coordination topologies cis-α, cis-β and trans. Exposure of the iron(II) salan(X) complexes to O(2) results in the formation of oxo-bridged iron(III) complexes of the type [{Fe(salan(X))}(2)(μ-O)] or [{Fe(salan(X))(L)}(2)(μ-O)]. The lack of catalytic activity of the iron(II) salan and bapen complexes in the oxidation of cyclohexane with H(2)O(2) as the oxidant is attributed to the rapid formation of stable and catalytically inactive oxo-bridged iron(III) complexes.  相似文献   

17.
A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited higher antibacterial acivities.  相似文献   

18.
The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.  相似文献   

19.
X- and Q-band EPR and ENDOR spectroscopy was used to study the structure of a series of heteroleptic and homoleptic copper bis(oxazoline) complexes, based on the (-)-2,2'-isopropylidenebis[(4S)-4-phenyl-2-oxazoline] ligand and bearing different counterions (chloride versus triflate); labelled [Cu(II)()]. The geometry of the two heteroleptic complexes, [Cu(II)()] and [Cu(II)()], depended on the choice of counterion. Formation of the homoleptic complex was only evident when the Cu(II)(OTf)(2) salt was used (Cu(II)(Cl)(2) inhibited the transformation from heteroleptic to homoleptic complexes). The hyperfine and quadrupole parameters for the surrounding ligand nuclei were determined by ENDOR. Well resolved (19)F and (1)H couplings confirmed the presence of both coordinated water and TfO(-) counterions in [Cu()].  相似文献   

20.
The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxylate ligands span relatively short Fe...Fe distances of 2.6633(11)-2.713(3) A. Intense (epsilon = 2700-3200 M(-1) cm(-1)) intervalence charge transfer bands were observed at 620-670 nm. EPR spectroscopy confirmed the S = (9)/(2) ground spin state of 1b-3b, the valence-delocalized nature of which was probed by X-ray absorption spectroscopy. The electron delocalization between paramagnetic metal centers is described by double exchange, which, for the first time, is observed in diiron clusters having no single-atom bridging ligand(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号