首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Semiconducting Sb2Se3 thin films have been prepared onto the stainless steel and fluorine doped tin oxide coated glass substrates from non-aqueous media using an electrodeposition technique. The electrodeposition potentials for different bath compositions and concentrations of solution have been estimated from the polarization curves. SbCl3 and SeO2 in the volumetric proportion as 1:1 with their equimolar solution concentration of 0.05 M form good quality films. The films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical absorption techniques. The SEM studies show that the film covers the total substrate surface with uneven surface morphology. The XRD patterns of the films obtained by varying compositions and concentrations show that the as-deposited films are polycrystalline with relatively higher grain size for 1:1 composition and 0.05 M concentration. The optical band gap energy for indirect transition in Sb2Se3 thin films is found to be 1.195 eV.  相似文献   

2.
La0.8Sr0.2MnO3 (LSMO) thin films were fabricated on alumina substrates by an improved sol-gel dip-coating process. It was found that multiple dip-coating process could not be performed until the pre-firing temperature reached 600 °C. Different amounts of LSMO powders were added to precursor solution with an aim to avoid cracks in LSMO thin films during calcining caused by the shrinkage mismatch between the film and the substrate. The structure and surface morphology of the films prepared from precursors with and without LSMO powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of 56.4 wt.% LSMO powders into the sol-gel precursor solution significantly modified the microstructure of films. A single LSMO perovskite phase was obtained on alumina substrate after calcining at 800 °C for 4 h by the improved sol-gel method. The sheet resistance of the films prepared with different processing parameters was measured by four-point dc method. Results indicated that the sheet resistance of films decreased with increasing the number of coating applications and the amount of LSMO powders.  相似文献   

3.
Thermoelectric films of n-Bi2Te3−ySey were prepared by potentiostatic electrodeposition technique onto stainless steel and gold substrates at room temperature. These films were used for morphological, compositional and structural analysis by environment scanning electron microscope (ESEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The effect of different substrates on the structure and morphology of Bi2Te3−ySey films and relation between Se content in the electrodepositing solutions and in the films were also investigated. These studies revealed that Bi, Te and Se could be co-deposited to form Bi2Te3−ySey semiconductor compound in the solution containing Bi3+, HTeO2+ and H2SeO3. The morphology and structure of the films are sensitive to the substrate material. The doped content of Se element in the Bi2Te3−ySey compound can be controlled by adjusting the Se4+ concentration in the electrodepositing solution. X-ray diffraction analysis indicates that the films prepared at −40 mV versus saturated calomel electrode (SCE) exhibit strong (1 1 0) orientation with rhombohedral structure.  相似文献   

4.
Se85Te10Bi5 films of different thicknesses ranging from 126 to 512 nm have been prepared. Energy-dispersive X-ray (EDX) spectroscopy technique showed that films are nearly stoichiometric. X-ray diffraction (XRD) measurements have showed that the Se85Te10Bi5 films were amorphous. Electrical conduction activation energy (ΔEσ) for the obtained films is found to be 0.662 eV independent of thickness in the investigated range. Investigation of the current voltage (I-V) characteristics in amorphous Se85Te10Bi5 films reveals that it is typical for a memory switch. The switching voltage Vth increases with the increase of the thickness and decreases exponentially with temperature in the range from 298 to 383 K. The switching voltage activation energy (ε) calculated from the temperature dependence of Vth is found to be 0.325 eV. The switching phenomenon in amorphous Se85Te10Bi5 films is explained according to an electrothermal model for the switching process. The optical constants, the refractive index (n) and the absorption index (k) have been determined from transmittance (T) and reflectance (R) of Se85Te10Bi5 films. Allowed non-direct transitions with an optical energy gap (Egopt) of 1.33 eV have been obtained. ΔEσ is almost half the obtained value of Egopt, which suggested band to band conduction as indicated by Davis and Mott.  相似文献   

5.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

6.
Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been successfully grown on p-type Si(100) substrate by using chemical solution decomposition (CSD) technique followed by rapid thermal annealing (RTA). The crystalline nature of the films has been studied by X-ray diffraction (XRD). Atomic force microscopy (AFM) was used to study the microstructure of the films. The dielectric properties of the films were studied. The capacitance-voltage characteristics have been studied in metal-ferroelectric-insulator-semiconductor (MFIS) configuration. The dielectric constant of BVO thin films formed on Si(100) is about 146 measured at a frequency of 100 kHz at room temperature. The capacitance-voltage plot of a Bi2VO5.5 MFIS capacitor subjected to a dc polarizing voltages shows a memory window of 1.42 V during a sweep of ±5 V gate bias. The flatband voltage (Vf) shifts towards the positive direction rather than negative direction. This leads to the asymmetric behavior of the C-V curve and decrease in memory window. The oxide trap density at a ramp rate of 0.2 V/s was estimated to be as high as 1.45×1012 cm−2.  相似文献   

7.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

8.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

9.
The aim of this work was to study the effect of MoNx film substrates on the structural properties of CuInSe2 films prepared by selenization of metallic Cu-In alloy precursors. MoNx films were prepared by reactive dc-magnetron sputtering. All the CuInSe2 films exhibit single phase chalcopyrite structure with (1 1 2) preferred orientation, which can be explained by the reduction of lattice mismatch between CuInSe2 and MoNx. The bulk composition of selenized CuInSe2 films are near stoichiometric, but the surface composition analysis suggests Cu deficiency on surface area. Furthermore, ordered defect compound, CuIn2Se3.5 is found on the surface of CuInSe2 films. The results will be helpful for fabricating Cd-free ZnO buffer layer CuInSe2 and Cu(In1−xGax)Se2 based thin film solar cells.  相似文献   

10.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

11.
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process.  相似文献   

12.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

13.
Polycrystalline thin films of p-CuIn(S1−xSex)2 have been deposited by a solution growth technique. The deposition parameters such as pH, temperature and time have been optimized. In order to achieve uniformity of thin film, triethanolamine (TEA) has been used. As deposited films have been annealed at 450 °C in air for 5 min. The surface morphology, compositional ratio, structural properties have been studied by SEM, EDAX and XRD technique, respectively. It has been found that films have chalcopyrite structure with the lattice parameters a=5.28 Å and c=11.45 Å at composition x=0.5. The grain size of all composition x measured from SEM and XRD is varied in between 450 and 520 nm. The optical transmittance spectra have been recorded in the range 350-1000 nm. The absorption coefficient has been calculated at the absorption edge for each of the composition x and it is in the range of 104 cm−1. The material shows the direct allowed band gap, which varies from 1.07 to 1.44 eV with change in composition (0≤x≤1.0). These parameters are useful for the photovoltaic application.  相似文献   

14.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

15.
Ferroelectric barium strontium titanate (Ba0.7Sr0.3TiO3)(BST) thin films have been prepared from barium 2-ethylhexanoate [Ba[CH3(CH2)3CH(C2H5)CO2]2], strontium 2-ethylhexanoate [Sr[CH3(CH2)3CH(C2H5)CO2]2] and titanium(IV) isopropoxide [TiOCH(CH3)2]4 precursors using a modified sol-gel technique. The precursor except [TiOCH(CH3)2]4 were synthesized in the laboratory. Transparent and crack-free films were fabricated on pre-cleaned quartz substrates by spin coating. The structural and optical properties of films annealed at different temperatures have been investigated. The as-fired films were found to be amorphous that crystallized to the tetragonal phase after annealing at 550 °C for 1 h in air. The lattice constants “a” and “c” were found to be 3.974 A and 3.990 A, respectively. The grain sizes of the films annealed at 450, 500 and 550 °C were found to be 30.8, 36.0 and 39.8 nm respectively. The amorphous film showed very high transparency (∼95%), which decreases slightly after crystallization (∼90%). The band gap and refractive index of the amorphous and crystalline films were estimated. The optical dispersion data are also analyzed in the light of the single oscillator model and are discussed.  相似文献   

16.
This paper reports the measurement of space charge limited conduction (SCLC) on the fabricated thin films of Se95−xSxZn5 (0.2≤x≤10) in temperature range 313–353 K for the first time. At high electric fields (E∼104 V/cm), the current could be fitted into the theory of space charge limited conduction, in case of uniform distribution of localized states in mobility gap. The homogeneity and surface morphology of thin films were assessed by scanning electron microscopy. The crystalline nature of the thin films was confirmed by powder XRD and the crystallite size was calculated using Scherer's formula. The crystallite size and density of localized states were found to increase with the increase of sulfur concentration. DC conductivity and activation energy were calculated and found to decrease and increase respectively, with the increase of sulfur concentration.  相似文献   

17.
Se-Te nanostructured thin films were deposited on glass substrates in the presence of oxygen and argon by thermal evaporation. The properties of Se-Te thin films strongly depend on the deposition method. During the process used, the substrate is cooled to a temperature of 77 K employing liquid nitrogen. The nanostructured thin films of Se100−xTex (where x=4, 8 and 16) are deposited on glass substrate. The surface morphology of the deposited films was investigated through Scanning Electron Microscopy (SEM). The typical size of these nanostructures is in the range 40-100 nm and the length is of the order of several micrometers. The optical parameters i.e. optical gap (Eg), absorption coefficient (α), and extinction coefficient (k) are calculated in the wavelength range 190-1100 nm. It was found that the optical band gap decreased from 3.4 to 2.9 eV when Te concentration was increased in the Se100−xTex nanostructured thin films. The large bandgap may be attributed to the decrease in particle size which clearly exhibits a quantum size effect. XRD analysis was performed to confirm glassy nature of the nanostructured thin films.  相似文献   

18.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

19.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

20.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号