首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Magnetic properties of nanographite-network-based nanoporous carbon having high surface area are investigated in the presence of magnetic oxygen guest molecules. The nanographite domains (stacked nanographene sheets) of 2-3 nm average in-plane size have localized spins of non-bonding π-electron state (edge-state) in the zigzag-shaped periphery of individual nanographene sheets. The electron paramagnetic resonance signal of edge-state spins is found to be highly sensitive to the presence of magnetic oxygen molecules. The line-width variation in the limit of lower oxygen pressure (1-20 Pa) shows that the magnetic interaction of oxygen can be divided into two temperature regimes, viz., the regime below 100 K, where chemisorption of oxygen is effective and the regime above 100 K, where only physisorption of oxygen takes place. Here, 100 K marks the energy of physisorption of oxygen molecules on nanographene, which is higher than the condensation energy of oxygen molecules represented by the boiling point of oxygen, 90 K, owing to the capillary effect. Above 100 K, magnetically active physisorbed oxygen molecules work to increase the line-width, which is governed by the dipolar field with oxygen molecules. The presence of a maximum in the line-width around 150 K, which is higher than 100 K, suggests the diffusion motion of oxygen molecules reduces the strength of exchange interaction between the edge-state spins and the oxygen spins as the temperature is elevated.  相似文献   

2.
First-principles calculations were performed to investigate the stability, electronic structure and magnetism in Group IV elements-doped alkali-metal oxides (M2O) [M: Li, Na, K, Rb] in antifluorite structure using the linear muffin-tin orbital method in its tight-binding representation (TB-LMTO). The calculations reveal that non-magnetic dopants can induce stable half-metallic ferromagnetic ground state in I2-VI compounds. Total energy calculations show that the ferromagnetic state is energetically more stable than the non-magnetic state at equilibrium volume. Ground state properties such as equilibrium lattice constant and bulk modulus were calculated. The magnetic moment is found to be 2.00 μB per dopant atom.  相似文献   

3.
The pressure-volume-temperature behavior of osmium was studied at pressures and temperatures up to 15 GPa and 1273 K. In situ measurements were conducted using energy-dispersive synchrotron X-ray diffraction in a T-cup 6-8 high pressure apparatus. A fit of room-temperature data by the third-order Birch-Murnaghan equation-of-state yielded isothermal bulk modulus K0=435(19) GPa and its pressure derivative K0=3.5(0.8) GPa. High-temperature data were analyzed using Birch-Murnaghan equation of state and thermal pressure approach. The temperature derivative of bulk modulus was found to be −0.061(9) GPa K−1. Significant anisotropy of osmium compressibility was observed.  相似文献   

4.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

5.
The phase transformations of titanium metal have been studied at temperatures and pressures up to 973 K and 8.7 GPa using synchrotron X-ray diffraction. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 345 K/GPa, and the transition pressure at room temperature is located at 5.7 GPa. The volume change across the α-ω transition is ΔV=0.197 cm3/mol, and the associated entropy change is ΔS=0.57 J/mol K. Except for ΔV, our results differ substantially from those of previous studies based on an equilibrium transition pressure of 2.0 GPa at room temperature. The α-ω-β triple point is estimated to be at 7.5 GPa and 913 K, which is comparable with previous results obtained from differential thermal analysis and resistometric measurements. An update, more accurate phase diagram is established for Ti metal based on the present observations and previous constraints on the α-β and ω-β phase boundaries.  相似文献   

6.
Thermodynamic properties of high-pressure solid phase ice II are studied theoretically. The P-V-T equation of state of ice II is derived and its thermodynamic functions are calculated based on the available experimental data. New results are presented concerning the equilibrium solid-solid phase transitions between ice II and ice Ih, ice II and III, and ice II and V.  相似文献   

7.
Polarized infrared reflectivity measurements between 300 and 10 K have been carried out on charge density waves (CDW) conductor blue bronze Tl0.3MoO3. Three important features are observed: (i) A bump at 1155 cm−1 in the reflectivity spectra of Tl0.3MoO3 at 300 K is a precursor of the Peierls gap due to optical excitations across a pseudogap, and this kind of Peierls-like gap opens gradually with decreasing temperature from 180 to 160 K. (ii) The three sharp modes as “triplet” of infrared reflectivity between 800 and 1000 cm−1 of Tl0.3MoO3 along [1 0 2] axis show red shift compared to K0.3MoO3 and Rb0.3MoO3, which is assigned to the increase of the distance of Mo-O bond with the substitution of thallium ions. (iii) Two peaks at about 514 and 644 cm−1 in the far-infrared reflectivity spectra of Tl0.3MoO3 along [1 0 2] direction are suggested to be the electronic transitions from the valence band to the midgap state and from occupied midgap state to the conduction band, respectively.  相似文献   

8.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

9.
Nickelocene [bis(η5-cyclopentadienyl)nickel: Ni(C5H5)2, electron spin S=1, the ground state configuration 3A2g] is paramagnetic and belongs to a typical molecule-based magnet. Heat capacities of nickelocene have been measured at temperatures in the 3−320 K range by adiabatic calorimetry. By comparing with those of diamagnetic ferrocene crystal, a small heat capacity peak centered at around 15 K and a sluggish hump centered at around 135 K were successfully separated. The low-temperature peak at 15 K caused by the spin is well reproduced by the Schottky anomaly due to the uniaxial zero-field splitting of the spin S=1 with the uniaxial zero-field splitting parameter D/k=45 K (k: the Boltzmann constant). The magnetic entropy 9.7 J K−1 mol−1 is substantially the same as the contribution from the spin-manifold R ln 3=9.13 J K−1 mol−1 (R: the gas constant). The sluggish hump centered at around 135 K arises from rotational disordering of the cyclopentadienyl rings of nickelocene molecule. The enthalpy and entropy gains due to this anomaly are 890 J mol−1 and 6.9 J K−1 mol−1, respectively. As the hump spreads over a wide temperature region, separation of the hump from the observed heat capacity curve involves a little bit ambiguity. Therefore, these values should be regarded as being reasonable but tentative. The present entropy gain is comparable with 5.5 J K−1 mol−1 for the sharp phase transition at 163.9 K of ferrocene crystal. This fact implies that although the disordering of the rings likewise takes place in both nickelocene and ferrocene, it proceeds gradually in nickelocene and by way of a cooperative phase transition in ferrocene. A reason for this originates in loose molecular packing in nickelocene crystal. Molar heat capacity and the standard molar entropy of nickelocene are larger than those of ferrocene beyond the mass effect over the whole temperature region investigated. This fact provides with definite evidences for the loose molecular packing in nickelocene crystal.  相似文献   

10.
Raman studies of a high-pressure structure of hydrogen hydrate, a filled ice Ic structure, were performed using a diamond anvil cell in the pressure range 3.2-44.1 GPa. The Raman spectra of a vibron revealed that extraction of hydrogen molecules from the filled ice Ic structure occurred above 20 GPa. In addition, the Raman spectra of a roton revealed that a rotation of hydrogen molecules in the filled ice Ic structure was suppressed at around 20 GPa and then the rotation recovered, and the rotation of hydrogen molecules was suppressed again above 35.5 GPa. These results indicate that intermolecular interactions increased between guest hydrogen molecules and host water molecules at around 20 and 35.5 GPa. These intermolecular interactions were considered to be induced to stabilize the filled ice Ic structure. Above 40 GPa, symmetrization of hydrogen bond was considered to contribute to the stability of hydrogen hydrate.  相似文献   

11.
We report new shock-compression data for single-crystal MgO at 114 and 192 GPa. Our data together with the existing shock-wave data revealed a volume discontinuity at 170±10 GPa along with the MgO Hugoniot. The discontinuity gives a volume increase of 1.9%, indicating a possible phase transition from a rock-salt structure (B1) to a high-temperature phase along with the MgO Hugoniot. We re-examined the Hugoniot data on polycrystalline sample (Mg0.6, Fe0.4)O up to 200 GPa [M.S. Vassiliou, T.J. Ahrens, The equation of state of Mg0.6Fe0.4O to 200 GPa, Geophys. Res. Lett. 9 (1982) 127-130], which showed similar discontinuity with a 2.2% volume increase at 135±10 GPa. Our results add to fundamental understandings of the behavior of MgO and the lower mantle mineral magnesiowüstite (Mg, Fe)O at ultrahigh pressure and temperature.  相似文献   

12.
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites.  相似文献   

13.
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the ω-β transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of −39±5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The α-ω-β triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the β phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the β phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal.  相似文献   

14.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

15.
The crystalline structure of a new compound containing the 1,3,4-oxadiazole moiety, 4-(5-methyl-1,3,4-oxadiazole-2yl-)-N,N′-dimethyl-phenylamine (MODPA) was determined. It shows a monoclinic structure with space group P21/c and lattice parameters: a=1.02997(6), b=0.64840(4), c=1.58117(10) nm and β=99.4820(10)°. To study the intermolecular interactions in oxadiazole containing organic crystals, X-ray studies on MODPA and 2,5-diphenyl-1,3,4-oxadiazole (DPO) were performed up to 5 GPa at room temperature. The Murnaghan equation of state is used to describe the compression behaviour of both substances. From these results, the bulk modulus and its pressure derivative were determined. The values obtained are: K0=6.3 GPa and K0=6.8 for MODPA and K0=7.3 GPa and K0=6.7 for DPO. Additionally, measurements under increasing temperature at ambient pressure were carried out to evaluate the thermal expansion coefficient: α=1.8×10−4 K−1 for MODPA and α=1.9×10−4 K−1 for DPO.  相似文献   

16.
X-ray and neutron powder diffraction studies of UO2 were performed under controlled oxygen partial pressure between room temperature and 1673 K. More than 40 neutron diffraction patterns were recorded. The thermal expansion coefficient of UO2 and the temperature dependence of Debye-Waller factors for oxygen and uranium atoms were determined. The dependence of Debye-Waller factors as a function of temperature is linear and the thermal expansion coefficient follows the classical Debye regime within the temperature range 300-1000 K. Above 1200 K, a departure from this quasi-harmonic behavior is clearly observed. Both an abnormal increase of the thermal expansion and of the oxygen sublattice disorder are evidenced. The departure of the lattice parameter from a linear thermal variation is found to be thermally activated with an effective activation energy close to 1 eV, very similar to the activation energy already found for the electrical conductivity. This new result suggests that polarons may affect the mean lattice parameter. A new thermodynamic model is then proposed to explain the heat capacity thermal variation by only three contributions: harmonic phonons, thermal expansion and polarons.  相似文献   

17.
We demonstrate that TiOCl is a good model inorganic system to investigate spin-Peierls state. Our 35Cl and 47,49Ti NMR data show that a pseudo spin-gap behavior below T*=135 K precedes successive phase transitions at Tc=94 K and into a singlet spin-Peierls ground state with a large energy gap Eg/kB=430 K.  相似文献   

18.
We have measured the buckling, B1g, phonon mode of optimally doped, de-twinned, YBa2Cu3O7−δ using inelastic X-ray scattering (IXS) at BL35XU of SPring-8. Measurements of this mode, which has atomic motion transverse to the Cu-O planes, serve to demonstrate some of the advantages of the unique two-dimensional (2-D) analyzer array at BL35. Analysis based on fitting the entire spectra simultaneously at 10 and 100 K shows that the buckling mode is rather broad in the middle of the zone (near (0.3 0 0)). We see a consistent softening of the mode at 10 K as compared to 100 K for all measured wave-vectors (h 0 0), and a q-dependent softening as zone center is approached.  相似文献   

19.
We report plane-polarised Raman spectra from YBa2Cu4O8 single crystals between 300 and 10 K. In the normal state we observe a gap-like depletion of intensity from the electronic continuum extending to around 1200 cm−1 with an onset temperature of around 225 K. We remove the phonons and pseudogap depletion from the spectra using a simple model and recover a characteristic high-Tc superconductor continuum. In the superconducting state, intensity returns to the continuum in the form of a very broad pair-breaking peak.  相似文献   

20.
The heat capacity of cerium zirconate pyrochlore, Ce2Zr2O7, was measured from 0.4 to 305 K by hybrid adiabatic relaxation method for various magnetic field strengths. Magnetisation measurements were performed on the sample also. The results revealed a low-temperature anomaly that showed Schottky-type characteristics with increasing magnetic field strength. The estimated entropy due to the magnetic ordering of the two Ce3+ moments is 1.37R, close to the theoretical value for a doublet ground state (1.39R). The enthalpy increments relative to 298.15 K were measured by drop calorimetry from 531 to 1556 K. The obtained results significantly differ from those reported in the literature; the origin of the discrepancy is due to the probable oxidation of the pyrochlore structure into fluorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号