首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horticultural waste collected from a landscape company in Singapore was utilized as the substrate for the production of laccase under solid-state fermentation by Trametes versicolor. The effects of substrate particle size, types of inducers, incubation temperature and time, initial medium pH value, and moisture content on laccase production were investigated. The optimum productivity of laccase (8.6 U/g substrate) was achieved by employing horticultural waste of particle size greater than 500 μm and using veratryl alcohol as the inducer. The culture was at 30 °C for 7 days at moisture content of solid substrate of 85% and initial pH 7.0. The decolorization was also investigated in order to assess the degrading capability of the ligninolytic laccase obtained in the above-mentioned cultures. The decolorization degree of a model dye, phenol red, was around 41.79% in 72 h of incubation. By far, this is the first report on the optimization of laccase production by T. versicolor under solid-state fermentation using horticultural waste as the substrate.  相似文献   

2.
Laccases are very interesting biocatalysts for several industrial applications. Its production by different white-rot fungi can be stimulated by a variety of inducing substrates, and the use of lignocellulosic wastes or industrial by-products is one of the possible approaches to reduce production costs. In this work, various industrial wastes were tested for laccase production by Trametes versicolor MZKI G-99. Solid waste from chemomechanical treatment facility of a paper manufacturing plant showed the highest potential for laccase production. Enzyme production during submerged cultivation of T. versicolor on the chosen industrial waste has been further improved by medium optimization using genetic algorithm. Concentrations of five components in the medium were optimized within 60 shake-flasks experiments, where the highest laccase activity of 2,378 U dm−3 was achieved. Waste from the paper industry containing microparticles of CaCO3 was found to stimulate the formation of freely dispersed mycelium and laccase production during submerged cultivation of T. versicolor. It was proven to be a safe and inexpensive substrate for commercial production of laccase and might be more widely applicable for metabolite production by filamentous fungi.  相似文献   

3.
Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm3), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm3). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45–70 °C with the maximal activity at pH = 4.5.  相似文献   

4.
R,R-2,3-butanediol (R,R-2,3-BD) was produced by Paenibacillus polymyxa ZJ-9, which was capable of utilizing inulin without previous hydrolysis. The Jerusalem artichoke pomace (JAP) derived from the conversion of Jerusalem artichoke powder into inulin extract, which was usually used for biorefinery by submerged fermentation (SMF), was utilized in solid state fermentation (SSF) to produce R,R-2,3-BD. In this study, the fermentation parameters of SSF were optimized and determined in flasks. A novel bioreactor was designed and assembled for the laboratory scale-up of SSF, with a maximum yield of R,R-2,3-BD (67.90 g/kg (JAP)). This result is a 36.3% improvement compared with the flasks. Based on the same bath of Jerusalem artichoke powder, the total output of R,R-2,3-BD increased by 38.8% for the SSF of JAP combined with the SMF of inulin extraction. Overall, the utilization of JAP for R,R-2,3-BD production was beneficial to the comprehensive utilization of Jerusalem artichoke tuber.  相似文献   

5.
Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH2PO4 8.0, MgSO4?7H2O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.  相似文献   

6.
N-Chloroacetylcytisine was synthesized by acylation of (–)-cytisine. Stable Z- and E-conformers with respect to rotational isomerism around the N-12–CO bond were found in PMR spectra at room temperature. The point at which PMR resonances of the Z- and E-conformers coalesced upon heating was measured. The transition barrier between the conformers was estimated.  相似文献   

7.
A feeding technology that was suitable for improving the nisin production by Lactococcus lactis subsp. lactis W28 was established. The effects of initial sucrose concentration (ISC) in the fermentation broth, feeding time, and feeding rate on the fermentation were studied. It was observed that a fed-batch culture (ISC = 10 g l−1) with 100 ml sucrose solution (190 g l−1) being evenly fed (9–10 ml h−1) into the fermenter after 3-h fermentation gave the best performance in terms of biomass and nisin yield. Under these conditions, the total biomass and the total nisin yield were approximately 23% and 51% higher than those in batch fermentation, respectively. When the sucrose concentration was controlled at 5–10 g l−1 in variable volume intermittent fed-batch fermentation (VVIF) with ISC = 10 g l−1, the total biomass and the total nisin yield were 29% and 60% above those in batch fermentation, respectively. The VVIF proved to be effective to eliminate the substrate inhibition by maintaining sucrose at appropriate levels. It is also easy to be scaled up, since various parameters involved in industrial production were taken into account.  相似文献   

8.
The hydrodynamic and conformational properties of molecules of poly(N,N-diallyl-N,N-dimethylammonium chloride) and N,N-diallyl-N,N-dimethylammonium chloride-maleic acid copolymers of different compositions in solutions with various ionic-strength and pH values, as well as of the polyelectrolyte complex based on the copolymer with dodecyl sulfate anions in chloroform, are studied. For poly(N,N-diallyl-N,N-dimethylammonium chloride) molecules in a 1 M NaCl solution, the Kuhn segment length and the hydrodynamic diameter of the chain are estimated as A = 3.9 nm and d = 0.48 nm, respectively. In acidic solutions with pH 3.5, the copolymers demonstrate behavior typical for polyelectrolytes. In an alkaline solution with pH 13, when 1 M NaCl is added to the solution of the copolymer containing 29 mol % maleic acid units, there is an antipolyelectrolyte effect that manifests itself as an increase in the intrinsic viscosity of the copolymer and in the hydrodynamic radius of its molecules. It is found that an increase in the fraction of maleic acid units in the copolymer from 12 to 42 mol % brings about a reduction in the equilibrium rigidity of its macromolecules from 4.1 to 2.2 nm. The equilibrium rigidity of polyelectrolyte-complex molecules is higher than that of initial copolymer molecules owing to steric interactions arising between the aliphatic chains of dodecyl sulfate anions. In an electric field, the molecules of the complex are oriented owing to the induced dipole moment resulting from the displacement of dodecyl sulfate anions along the chain contour.  相似文献   

9.
Transglutaminase (TGase) is a multifunctional enzyme vital for many physiologic processes, such as cell differentiation, tissue regeneration, and plant pathogenicity. The acyl transfer function of the enzyme can activate primary amines and, consequently, attach them onto a peptidyl glutamine, a reaction important for various in vivo and in vitro protein crosslinking and modification processes. To understand better the structure-function relationship of the enzyme and to develop it further as an industrial biocatalyst, we studied TGase secreted by several Streptomyces species and Phytophthora cactorum. We purified the enzyme from S. lydicus, S. platensis, S. nigrescens, S. cinnamoneus, and S. hachijoensis. The pH and temperature profiles of S. lydicus, S. platensis, and S. nigrescens TGases were determined. The specificity of S. lydicus TGase toward its acyl-accepting amine substrates was characterized. Correlation of the electronic and steric features of the substrates with their reactivity supported the mechanism previously proposed for Streptomyces mobaraensis TGase.  相似文献   

10.
The present investigation highlights the optimal conditions for production of a non-toxic, bi-functional fibrinolytic enzyme xylarinase produced by endophytic fungus Xylaria curta by solid substrate fermentation using rice chaff medium. The purified enzyme is a monomeric protein with a molecular mass of ~33 kDa. The enzyme exhibits cleavage of Aα and Bβ chains of fibrin(ogen) and has no effect on γ chain. The optimal fibrinolytic activity of the enzyme was observed at 35 °C and pH 8. The fibrinolytic activity was enhanced in the presence of Ca2+, whereas it was completely inhibited in the presence of Fe2+ and Zn2+ ions and inhibitors like EDTA and EGTA suggesting it to be a metalloprotease. The K m and V max of the enzyme for azocasein were 326 μM and 0.13 μM min?1. The N-terminal sequence of the enzyme (SNGPLPGGVVWAG) was same when compared to xylarinase isolated from culture broth of X. curta. Thus, xylarinase could be exploited as a potent clot busting enzyme which could be produced on large scale using solid substrate fermentation.  相似文献   

11.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

12.
A copolymer of N,N-diallyl-N,N-dimethylammonium chloride with maleic acid of constant composition was prepared under the conditions of radical initiation. The possibility of the functionalization of the copolymer with drugs containing amino groups by polymer-analogous transformations was examined. Conditions were found for preparing conjugates of the copolymer with isoniazid. The structures and the quantitative compositions of the conjugates were determined by 13С NMR spectroscopy, and the possibility of preparing conjugates with controlled drug content was demonstrated.  相似文献   

13.
14.
Laccases catalyze the oxidation of various aromatic organic compounds concomitantly with molecular oxygen reduction to water. Triphenylmethane dyes are synthetic compounds widely used in diverse industries. Their removal from effluents is difficult, due to their high degree of structural complexity; hence, their high concentration in effluents cause a negative impact on the environment. In the present work, molecular docking was used to evaluate interactions between rGlLCC1 or rPOXA 1B enzymes with Crystal Violet (CV) or Malachite Green (MG) dyes. In addition, removal tests of the two dyes were performed. Van der Waals interactions were obtained for only the CV dye for both GlLCC1 and POXA 1B enzymes. Nevertheless, in the GlLCC1 model, two π-π interactions were observed. For the MG dye only, Van der Waals interactions were obtained. Moreover, amino acid composition interacting in each model with each dye was similar. It is important to highlight that by molecular docking, none of the estimated ligand configurations generated hydrogen bonds. Thus, explaining the difficulty to degrade CV and MG. Regarding CV, maximum decolorization percentage was 23.6 ± 1.0% using Ganoderma lucidum supernatant and 5.0 ± 0.5% with Pleurotus ostreatus supernatant. When using recombinant laccase enzyme concentrates, decolorization percentages were 9.9 ± 0.1 and 7.5 ± 1.0% for rGlLCC1 and rPOXA 1B, respectively. On the other hand, for the MG dye, maximum decolorization percentages were 52.1 ± 5.1 and 2.3 ± 0.2% using G. lucidum and P. ostreatus concentrates, respectively. Whereas with recombinant laccase enzymatic concentrates, values of 9.4 ± 0.8% were obtained, with rGlLCC1, and 2.1 ± 0.1% when using rPOXA 1B. These findings represent an important step in bioremediation processes improvement and efficiency of industry-generated products, using environmentally friendly alternatives.  相似文献   

15.
Conformers of the biologically active compounds CH3P(O)(OR)(SCH2CH2NR 2 ), where (I) R = i-C4H9, R′ = C2H5 and (II) R = C2H5, R′ = i-C3H7, are calculated within the AM1 level of theory. The elongated and twisted forms with maximum and minimum distances between a nitrogen atom and those of a phosphorus tetrahedron, respectively, and bearing a syn and anti oriented alkoxy group relative to a phosphoryl oxygen, are studied. It is found that the differences between the energy, electronic, and geometric parameters of these forms are apparent in differences between their properties, e.g., the ability to participate in complexation and protonation, reactions that to some extent simulate the interaction between a substance and a biological object.  相似文献   

16.

Background  

Adenylation of nicotinate mononucleotide to nicotinate adenine dinucleotide is the penultimate step in NAD+ synthesis. In Escherichia coli, the enzyme nicotinate mononucleotide adenylyltransferase is encoded by the nadD gene. We have earlier made an initial characterization in vivo of two mutant enzymes, NadD72 and NadD74. Strains with either mutation have decreased intracellular levels of NAD+, especially for one of the alleles, nadD72.  相似文献   

17.
The composition of lipids from the aerial parts of two species of halophytes from the family Chenopodiaceae, Halostachys caspica C. A. Mey. and Halocharis hispida Bge. was determined. Neutral lipids (NL, 62.1 and 54.2%, respectively) dominated the total lipids (TL) of these plants. More than a third of the NL were esters of aliphatic alcohols and phytosterols (FAE). Fatty acids 16:0, 18:1, and 18:2 dominated the acids of FAE; 16:0, 18:1, and 18:3, the phospholipids. The principal fatty acids of glycolipids were unsaturated acids (68.3 and 75.1%) with linolenic acid dominating (44.9 and 43.5%). Presented at the 7th International Symposium on the Chemistry of Natural Compounds, Tashkent, October 16–18, 2007. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 276–278, May–June, 2009.  相似文献   

18.
Summary. Condensation of (2-iodophenyl)ethylamines with cyclohexanoylacetaldehyde provided the corresponding aldimines which were reduced yielding secondary phenethylcyclohexanoylethylamines. These in turn were appropriate intermediates to prepare several erythrinanes by a sequential intramolecular Strecker and intramolecular Bruylants reaction. In contrast, the C-ring homologue schelhammeranes were not available on this route.Part of PhD thesis, LMU München, D  相似文献   

19.
20.
Aryl alcohol oxidase (AAO) is an extracellular flavoenzyme involved in lignin degradation by white rot fungi. Screening of lignolytic and AAO activity from twenty different fungal species were carried out. Among them, seven species showed lignolytic activity and three of them (Pleurotus ostreatus, Pleurotus eous, and Pleurotus platypus) were found to be AAO positive. Maximal AAO activity was observed in batch cultures of P. ostreatus and was found to be induced by aromatic amino acids and aryl alcohols up to a level of 289 U/l. Purification of AAO was carried out by three-phase partitioning (TPP). The 67 kDa enzyme was purified up to 10.19-fold by TPP with an overall recovery of 10.95%. Optimum pH and temperature for P. ostreatus AAO activity was found to be around 6 and 40 °C, respectively. From the LB plot, K m value of AAO for oxidizing veratryl alcohol was determined to be 0.6 mM. Results of the study indicate that P. ostreatus is the best producers of AAO, and they could be employed as promising fungal species for biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号