首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Composite gels based on polyacrylamide and poly(N-isopropyl acrylamide) with incorporated sodium bentonite particles are synthesized. It is shown that the presence of hydrophobic isopropyl groups in a polymer molecule promotes the subsequent formation of highly ordered aggregates of clay and cetylpyridinium chloride in a gel composite. An increase in temperature results in the collapse of composite gels based on poly(N-isopropyl acrylamide); however, no marked changes in the structure of lamellar aggregates of clay and surfactant are observed. It is revealed that the gel can stabilize lamellar structures formed in organoclay suspension prior to the incorporation into swollen polymer network.  相似文献   

2.
Sheared self-assembled lamellar phases formed by symmetrical diblock copolymers are investigated through dissipative particle dynamics simulations. Our intent is to provide insight into the experimental observations that the lamellar phases adopt parallel alignment at low shear rates and perpendicular alignment at high shear rates and that it is possible to use shear to induce a transition from the parallel to perpendicular alignment. Simulations are initiated either from lamellar structures prepared under zero shear where lamellae are aligned into parallel, perpendicular, or transverse orientations with respect to the shear direction or from a disordered melt obtained by energy minimization of a random structure. We first consider the relative stability of the parallel and perpendicular phases by applying shear to lamellar structures initially aligned parallel and perpendicular to the shear direction, respectively. The perpendicular lamellar phase persists for all shear rates investigated, whereas the parallel lamellar phase is only stable at low shear rates, and it becomes unstable at high shear rates. At the high shear rates, the parallel lamellar phase first transforms into an unstable diagonal lamellar phase; and upon further increase of the shear rate, the parallel lamellar phase reorients into a perpendicular alignment. We further determine the preferential alignment of the lamellar phases at low shear rate by performing the simulations starting from either the initial transverse lamellar structure or the disordered melt. Since the low shear-rate simulations are plagued by the unstable diagonal lamellar phases, we vary the system size to achieve the natural spacing of the lamellae in the simulation box. In such cases, the unstable diagonal lamellar phases disappear and lamellar phases adopt the preferential alignment, either parallel or perpendicular. In agreement with the experimental observations, the simulations show that the lamellar phase preferentially adopts the parallel orientation at low shear rates and the perpendicular orientation at high shear rates. The simulations further reveal that the perpendicular lamellar phase has lower internal energy than the parallel lamellar phase, whereas the entropy production of the perpendicular lamellar phase is higher with respect to the parallel lamellar phase. Values of the internal energy and entropy production for the unstable diagonal lamellar phases lie between the corresponding values for the parallel and perpendicular lamellar phases. These simulation results suggest that the relative stability of the parallel and perpendicular lamellar phases at low shear rates is a result of the interplay between competing driving forces in the system: (a) the system's drive to adopt a structure with the lowest internal energy and (b) the system's drive to stay in a stationary nonequilibrium state with the lowest entropy production.  相似文献   

3.
The self-assembly behavior of a commercial mixture of polyglycerol fatty acid esters (PGE) and water is investigated as a function of temperature and surfactant content. The phase diagram of this pseudo-binary mixture was characterized using a combination of cross-polarized light and freeze-fracture electron microscopy (cryo-SEM), X-ray diffraction (XRD), small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). Our experiments show that the morphology of the supramolecular aggregates is lamellar and present in the form of a continuous or dispersed phase (multilamellar vesicles) depending on the water content of the system. Under the effect of temperature, the short- and long-range order of the bimolecular layers successively changes from a biphasic surfactant dispersion to a lamellar liquid-crystalline (Lalpha) and a stable lamellar gel phase (Lbeta) upon cooling; this transition is found to be irreversible. Formation of the lamellar aggregates can be related to the average molecular structure and shape factor of PGE. The stability of the resulting gel phase (Lbeta) appears to be due to the presence of small amounts of unreacted ionic co-surfactant, namely, fatty acid soaps, in this per se nonionic commercial mixture.  相似文献   

4.
Dialkyl lecithin dispersions in water exhibit two phase transitions upon cooling from the lamellar phase (L(α)). At the main transition (T(M)) the L(α) phase changes to a ripple (gel) phase (P(β')) which then transforms to a second gel phase (L(β')) at the "pretransition" (T(P)). We have made accurate density measurements through the various phases for two lecithins having unequal chains: 1-myristoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (MSPC) and 1-stearoyl-2-myristoyl-sn-glycero-3-phosphatidylcholine (SMPC). The measurements were carried out over five heat/cool cycles from 5 to 55 °C, followed by cooling back to 5 °C. The samples were then held at 50 °C for 24 hours, followed by a further three cool/heat cycles. For SMPC we observe an increase in density of the gel phases over the first 5 cycles, followed by much smaller changes after incubation at 50 °C. The lamellar phase also shows an increase in density, albeit much smaller. This parallels the behaviour of 1,2-di-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-di-myristoyl-sn-glycero-3-phosphatidylcholine (DMPC) reported earlier (Jones et al., Liquid Crystals 32, 1465 (2005)). For MSPC we observe a decrease in density within the gel phases while T(P) almost disappears after the first cycle. The lamellar phase shows little evidence of any change with each cycle. Within the lamellar phases there is a marked reduction in density on approaching T(M), which is attributed to the formation of transitory gel phase domains. Additional measurements by DSC and X-ray diffraction show that the changes in densities are not accompanied by large changes in transition enthalpies or phase structures. NMR data indicate that the pretransitional event within the L(α) phase is accompanied by ordering of the alkyl chains. The results indicate that the exact nature of the lipid alkyl chains could play a key role in the formation of gel phase patches within membrane bilayers. Their detailed chemical structures merit more attention than by simply assuming a uniform "bending energy" to describe the behaviour.  相似文献   

5.
We report the preparation of a new class of lamellar hybrid organic–inorganic materials obtained by self-assembly of bridged organosilica precursors containing long alkylene chains during the sol–gel process. The self-assembly is induced by lipophilic van der Waals interactions. The introduction of –SS– bonds in the core of the alkylene chains permitted the functionalisation of lamellar materials, which were subsequently transformed into SH and –SO3H groups. This methodology was extended to the formation of lamellar hybrid materials containing amino groups thanks to CO2 as bridging groups as well as the formation of lamellar hybrid materials containing carboxylic groups. In this last case, the hydrolysis and polycondensation of cyanoalkyltrialkoxysilanes permitted the one pot synthesis of lamellar hybrid materials thanks to in situ hydrogen bonds formation between carboxylic acids groups. All these functional lamellar materials exhibit a very high chelating capability towards transition metal and lanthanide ions.  相似文献   

6.
The interaction of hem agglutininneuraminidase (HN) and fusion (F) glycoproteins with swollen vesicles of 1,2-dihexadecyl-sn-glycero-3-phosphatidylcholine (DHPC) was investigated under transition from gel to fluid phase. X-ray studies of the structure of lipid/HN-F mixtures in normal and swollen vesicles have shown that the lamellar bilayer structure predominate in the gel and liquid crystalline phases. A swollen lipid phase, in which the mean repeat distance of lipid bilayers is larger than in the other phases was found. The nature of this phase is similar to the anomalous bilayer swelling reported in literature. The presence of HN and F in the vesicles led to the coexistence of structures with low and high lamellar order, showing larger repeat distance in comparison with the pure lipid. This finding was attributed to the increase in the lipid bilayer thickness due to the HN-F included in the free water layer. The thermal behaviour of the system was not affected by the vesicle swelling. The data showed the existence of gel and liquid crystalline lamellar phases and changes in lipid/HN-F specific heats, mainly due to the concentration effect of the HN-F and its location in the free water layer.  相似文献   

7.
In this review, we summarize a series of experimental studies of the swelling of zwitterionic lamellar phospholipid and phospholipid-cholesterol systems using a novel double twin calorimeter. With this method, one can obtain simultaneous measures of the partial molar free energy and the partial molar enthalpy, and the experimental studies thus provide a complete thermodynamic characterization of the isothermal swelling process. A major finding is that the swelling of lamellar zwitterionic phospholipid systems at higher water contents (> 4 water molecules per lipid) is endothermic. The enthalpy has the opposite sign relative to the free energy, thus demonstrating that the swelling process is entropy driven. The water uptake also triggers a transition from a gel to a liquid crystalline state showing that, at given water content, the swelling pressure is much higher in the liquid crystal than in the gel. When cholesterol is added to the system the liquid ordered phase is formed at all available water contents. In this phase the swelling pressure varies smoothly and takes relatively low values at water contents below two per phospholipid, while it is substantially higher than in the gel phase at higher water contents. Together, these data demonstrate that the swelling pressure is sensitive to the phase state of the lipids. We also describe a series of studies that demonstrate that the addition of a second polar solute to the phospholipid–water system has a remarkably small effect on the swelling behavior when analyzed with respect to solvent volume. The reviewed experimental studies provide a thermodynamic characterization of the swelling of lamellar zwitterionic phospholipid systems that should be encompassed in the mechanistic molecular interpretation of the “hydration force.”  相似文献   

8.
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bending elasticity decreases with increasing water dilution, in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles to be equilibrium structures. The measurements of the bending elasticity are confirmed by the transition of the lamellar phase of CTAT/SDBS from a turbid, viscoelastic gel to a translucent fluid as the water fraction is decreased below 40 wt %. Freeze-fracture electron microscopy shows that the gel is characterized by spherulite defects made possible by spontaneous bilayer curvature and low bending elasticity. This lamellar gel phase is common to a number of catanionic surfactant mixtures, suggesting that low bending elasticity and spontaneous curvature are typical of these mixtures that form spontaneous vesicles.  相似文献   

9.
For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.  相似文献   

10.
The phase transformation of mesostructured titanium phosphate (TiPO) from hexagonal to lamellar structure was observed in a simply hydrothermal treatment, accompanied by drastically morphological changes in the micrometer-sized particles. XRD pattern revealed that different mesostructures were obtained by simply varying hydrothermal temperature or treatment duration. SEM and TEM observations showed the morphological evolution from individual particles to interconnected nanoplatelets. A significant blue shift in UV-vis spectra was observed for lamellar mesostructured material, which may be associated with the different coordinated Ti-sites in the hexagonal and lamellar mesostructures. FT-IR spectra and detailed (31)P MAS NMR studies indicated that additional POH groups were presented in the lamellar structure, which might play a key role in the structural and morphological transformations of mesostructures.  相似文献   

11.
The time dependent changes of the lamellar gel structure in a nonionic O/W cream were studied. It appeared that the changes were connected with alterations in the hydrophilic layers of this lamellar gel structure. The structure of the hydrocarbon layers did not change. The alterations were induced by an increasing hydration of the surfactant molecules on cooling from the preparation temperature to room temperature. Ageing of the cream involves a decrease of the thickness of the hydrophilic layers and a change of the distribution of the surfactant molecules, resulting in, among other things, a decrease of the release rate of a hydrophilic drug. Ageing of the cream can be prevented by using the appropriate amount of starting materials or by the use of polymerizable surfactants. In the former case a cream, from which a drug is slowly released, is obtained. On the other hand, creams containing polymerized surfactants can release drugs at a relatively high rate.  相似文献   

12.
Mechanism of the lamellar crystalline phase formation of distearoyl‐phosphatidylethanolamine (DSPE) dispersed in excess glycerol has been examined by differential scanning calorimetry. It was found that transformation of liquid‐crystal phase to a crystalline phase must be mediated by a lamellar‐gel phase. Further examination of the kinetic phase behavior using Avrami and Tobin models suggested a single dimensional growing pattern and a three‐step mechanism of the crystallization, consisting of nucleation, normal growth, and restricted growth.  相似文献   

13.
Silicas with hierarchical porous architectures attracted much attention, due to their potential applications in catalysis and separation. Generally, they were prepared through dual‐ or triple‐templating approaches. Herein, mesoporous silica nanoparticles with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared using the self‐assemblies of a chiral low‐molecular‐weight amphiphile as templates through a single‐templating approach. The formation of the lamellar mesopores was studied by taking field‐emission scanning electron microscopy and transmission electron microscopy images after different reaction times. The lamellar pores were proposed to be formed by merging rod‐like micelles during the sol‐gel process. Moreover, helical nanofibers with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared with the addition of n‐octanol as a co‐structure‐directing agent.  相似文献   

14.
Some lamellar phases made with aqueous lyotropic liquid crystals were used as templates for the gelation of a silica inorganic network from tetramethylorthosilicate (TMOS). The aim was to synthesize materials with an anisotropic texture.Lamellar phases were obtained by using non-ionic surfacants. At first, structural, textural and rheological properties of the lamellar phases were studied. Then, the evolution of the system after introduction of the alkoxide, i.e., during the sol-gel transition, was followed by low angle X ray diffraction and rheological measurements. Finally, a textural study of dried gels was carried out.The formation of gels with a lamellar structure was analysed by compressing the total phase diagram (quaternary system) to a ternary system. The hydrolysis and condensation reactions of the TMOS are strongly influenced by the presence of the structured lamellar phase. Gelation seems to happen around the liquid crystal microdomains. A schematic model of gelation is proposed based on experimental observations.  相似文献   

15.
The evolution of the OBS/water/decane/pentanol lyotropic lamellar crystal is followed from 0% to more than 90% decane content. The lamellar spacing (d) varies then from 35 Å to 11000 Å. The swelling is followed with small angle x-ray scattering and the Bragg divergence in the intensity is found to disappear in moderately swollen lamellar crystal (d from 200 Å up to 800 Å) while the central scattering increases. More striking is the reappearance of the Bragg divergences observed by SAXS (d from 800 Å to 1100 Å) and for extremely swollen lamellar crystals in the angular distribution of scattered light (d from 2 000 Å to 10 000 Å). We discuss these observations along the lines of the recent models of swollen lamellar liquid crystals and in particular the apparent evolution of the dilute lamellae.  相似文献   

16.
Cetyltrimethylammonium surfactants with a range of oligo carboxylate anions bearing 2, 3, or 4 negative charges have been synthesized, and their respective behaviors in binary mixtures with water and in ternary mixtures with added decanol have been investigated. In binary mixtures with water, all surfactants formed nearly spherical micelles at high water contents; however, the interactions between micelles varied strongly with the number of charges in the counterion. Micelles with divalent counterions were generally miscible with water, whereas micelles with tri- or tetravalent counterions demixed in one concentrated and one dilute phase. Addition of decanol resulted in all cases in the appearance of a lamellar phase, and all investigated oligo carboxylate anions (di-, tri-, and tetravalent) gave rise to a strong attraction between the lamellar planes, resulting in a limited swelling (up to 35-40 wt % water) of the lamellar phase in contact with excess water. These experiments confirm the theoretically predicted influence of aggregate geometry (spheres or planes) on the attraction between colloidal aggregates neutralized by multivalent counterions. Further addition of decanol resulted in the appearance of a second birefringent phase in equilibrium with the lamellar phase. SWAXS showed this phase to be lamellar and to display short-range order that disappeared upon heating. This phase is identified as a lamellar gel phase (Lbeta-phase).  相似文献   

17.
The temperature-surfactant concentration phase diagram was examined for the dodecyltrimethylammonium dimethylphosphate/3-methyl-3-methoxybutanol/water ternary system. The phase diagram contained a highly elastic gel phase which is known as a “ringing gel phase”. The ringing gel phase and adjacent phases in the ternary system were investigated by polarized optical microscopy, freeze-fracture transmission electron microscopy, and 31P NMR. Globular textures were observed in an optically isotropic gel phase. Since the globules were larger than those found in an isotropic solution, the texture consists of domains of aggregated units in the cubic (I1) phase. Structure units of domains are equivalent to microemulsions which are constructed by surfactant molecules and swollen by alcohol in the isotropic (L1) phase. Characteristic polarized microscopic textures were visualized in two phases with higher surfactant concentrations. These phases were identified as being hexagonal (H1) and lamellar (L) liquid crystals which was confirmed by transmission electron microscopy. The 31P NMR signal of the ringing gel showed a sharp singlet the same as that of the L1 phase, indicating the fully averaged anisotropic interaction of the aggregates. The characteristic NMR signals of the anisotropic hexagonal and lamellar liquid crystal phases displayed chemical shielding with an asymmetric lineshape.  相似文献   

18.
Stratum corneum (SC) lipids are of particular importance in maintaining the permeability barrier function. Although many studies have demonstrated that UVB irradiation of mammalian skin reduces barrier function, the responsible alterations in SC lipid profiles are not known. In this study, we investigated both compositional and morphological alterations in SC lipids with the development of barrier abnormalities caused by daily UVB irradiation in hairless rat skin. The UVB irradiation of suberythemal doses (0.5 minimal erythema dose) significantly increased transepidermal water loss (TEWL) relative to nonirradiated control, indicating a diminished barrier function. Under these conditions, the total amounts of major SC lipid species (ceramides, cholesterol, free fatty acids) in UVB-irradiated SC did not differ from those in nonirradiated SC. However, electron microscopic observations revealed marked abnormalities in the intercellular domains of UVB-irradiated SC, where naturally occurring intercellular multilamellar structures were often absent and leaving the area with the appearance of an empty space. Moreover, in UVB-irradiated SC, individual corneocytes often showed small amounts of intercellular deposition product with abnormal lamellar structure, where lamellar body sphingomyelinase activity was present. These observations demonstrated a partial failure of lamellar body secretion in UVB-irradiated SC and suggested that a defect in the secretion of lamellar body-derived lipids and enzymes to SC intercellular space is, at least in part, responsible for the observed abnormal intercellular structure and barrier disruption.  相似文献   

19.
Oil-in-water emulsions were developed employing the HLB system and emulsion phase inversion (EPI) method. X-ray diffraction revealed that the anisotropic structures around the inner phase globules were lamellar gel network phases. The calculated distances between the lamellae made after preparation and 3 month latter showed that there was no swelling of the lamellar gel network indicating good stability and few changes during storage. The developed emulsions were stable and have potential to be employed for cosmetic and pharmaceutical purposes. The gel phase network and vegetal components seemed to be contributing factors.   相似文献   

20.
Emulsions are excellent pharmaceutical vehicles used in both the pharmacy and cosmetic industries. Vegetable oils have several effects/benefits on skin and can be used in emulsions to release principal active components for cosmetic purposes. Herein, multiple W/O/W emulsions were formulated in a one-step emulsification method, and the resulting anisotropic structures were characterized by x-ray diffraction measurements. The multiple emulsions obtained were stable and maintained their anisotropic structures over 2 years. WAXS (wide-angle x-ray scattering) measurements of these emulsions suggested that the carbon chains of the surfactant around the globules are disposed in a gel network phase. Furthermore, SAXS (small-angle x-ray scattering) measurements indicated that the surfactant is organized in lamellar layers around the globules. Thus, for the first time, we demonstrated that stable lamellar gel phase multiple emulsions can be made from vegetable oils. In addition to having the advantage of being prepared in one step, these emulsions have desirable characteristics that can be used in the cosmetic industry as natural active principles with low surfactant concentration and the unique features of multiple emulsions with gel phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号