首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A range of potassium-based alumina sorbents were fabricated by impregnation of alumina with K2CO3 to examine the effects of the structural and textural properties of alumina on the CO2 sorption and regeneration properties. Alumina materials, which were used as supports, were prepared by calcining alumina at various temperatures (300, 600, 950, and 1,200 °C). The CO2 sorption and regeneration properties of these sorbents were examined during multiple tests in a fixed-bed reactor in the presence of 1 vol% CO2 and 9 vol% H2O. The regeneration capacities of the potassium-based alumina sorbents increased with increasing calcination temperature of alumina. The formation of KHCO3 increased with increasing calcination temperature during CO2 sorption, whereas the formation of KAl(CO3)(OH)2, which is an inactive material, decreased. These results is due to the fact that the structure of alumina by the calcination temperature is related directly to the formation of the by-product [KAl(CO3)(OH)2]. The structure of alumina plays an important role in enhancing the regeneration capacity of the potassium-based alumina sorbent. Based on these results, a new potassium-based sorbent using δ-Al2O3 as a support was developed for post-combustion CO2 capture. This sorbent maintained a high CO2 capture capacity of 88 mg CO2/g sorbent after two cycles. In particular, it showed a faster sorption rate than the other potassium-based alumina sorbents examined.  相似文献   

2.
Potassium-based sorbents using γ-Al2O3 or TiO2 as a support or an additive material have disadvantages in terms of their thermal stability and cyclic CO2 capture. To overcome the shortcomings of these sorbents, a novel potassium-based sorbent (KSnI30) using SnO2 was developed in this study. The KSnI30 sorbent formed only K2CO3 and SnO2 phases without any inactive alloy species even after calcination at high temperatures (500–700 °C), indicating the good thermal stability of the KSnI30 sorbent regardless of the calcination temperature. Furthermore, the KSnI30 sorbent has an excellent regeneration property (above 98 %), as well as high CO2 capture capacities (89–94 mg CO2/g sorbent). Its excellent regeneration property is due to the formation of a KHCO3 phase without by-products during CO2 sorption. These results of the present study demonstrate that the SnO2 shows promise as a new support or an additive material to replace TiO2 and γ-Al2O3 in the preparation of a regenerable potassium-based sorbent for post-combustion CO2 capture with good thermal stability and excellent regeneration property.  相似文献   

3.
In a fixed-bed absorber at 40°C, the dynamics of carbon dioxide sorption over composite sorbents prepared by impregnation of potassium carbonate in various porous matrixes is studied. The dynamic capacity of the synthesized sorbents is shown to reach 0.12 g CO2 per 1 g of the sorbent. The composite dynamic capacity depends on the nature of the host matrix and decreases in the sequence alumina > activated carbon > vermiculite > silica gel. For K2CO3-on-alumina, the sorption capacity decreases considerably after the first cycle of «absorption and regeneration under 200–350°C», whereas the sorbents based on active carbons could be reversibly restored. The findings are discussed within the idea on a chemical interaction between the host matrix and the impregnated salt.  相似文献   

4.
Sorption of CO2 in the presence of water vapor by the K2CO3—-Al2O3 composite sorbent was studied by IR spectroscopy in situ, X-ray diffraction analysis, and the differentiating dissolution method and reasons for a decrease in its dynamic capacity are given. The samples containing K2CO3·1.5H2O in pores are characterized by the maximal dynamic capacity. A mechanism for CO2 sorption was proposed, which qualitatively explains the obtained dependence of the capacity on the water content in the composite sorbent. A high dynamic capacity can be maintained by regeneration of the sorbents by water vapor at 170 °N. The capacity of the sorbents decreases during the first 10 sorption—regeneration cycles due to the formation of an inactive phase of potassium aluminum carbonate.  相似文献   

5.
The stability of amine-functionalized silica sorbents prepared through the incipient wetness technique with primary, secondary, and tertiary amino organosilanes was investigated. The prepared sorbents were exposed to different gaseous streams including CO2/N2, dry CO2/air with varying concentration, and humid CO2/air mixtures to demonstrate the effect of the gas conditions on the CO2 adsorption capacity and the stability of the different amine structures. The primary and secondary amine-functionalized adsorbents exhibited CO2 sorption capacity, while tertiary amine adsorbent hardly adsorbed any CO2. The secondary amine adsorbent showed better stability than the primary amine sorbent in all the gas conditions, especially dry conditions. Deactivation species were evaluated using FT-IR spectra, and the presence of urea was confirmed to be the main deactivation product of the primary amine adsorbent under dry condition. Furthermore, it was found that the CO2 concentration can affect the CO2 sorption capacity as well as the extent of degradation of sorbents.  相似文献   

6.
《Journal of Energy Chemistry》2017,26(5):1030-1038
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for CO_2 capture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the CO_2 sorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher CO_2 sorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest CO_2 sorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiO_2 particles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for CO_2 and the stronger temperature dependence of CO_2 capacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the CO_2 sorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.  相似文献   

7.
Nanoporous carbons loaded with both MgO and CaO were prepared by a simple heating of mixtures consisting of poly(ethylene terephthalate) and natural dolomite. Preparations were carried out at temperatures ranging from 850 to 1,000 °C that ensured complete thermal decomposition of the dolomite contained in the mixtures to the oxides. An influence of the PET/dolomite weight ratio and temperature of the preparation process on the porosity of the obtained composite products and on CaO and MgO crystallite sizes are discussed using the results of nitrogen adsorption/desorption at 77 K and X-ray diffraction analyses, respectively. Performances of the hybrid materials as sorbents for carbon dioxide were examined using thermogravimetric analyses. Finally, possibility of regeneration of the spent sorbent materials together with a side—effect accompanying this process are discussed on the basis of thermogravimetric measurements. As found, a part of CO2 captured by the hybrid sorbents gets adsorbed weakly and another portion is fixed strongly. During thermal regeneration, the strongly fixed CO2 reacts with carbon material. In this way small fraction of a sorbent is lost.  相似文献   

8.
Dry potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, CaO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property of various sorbents were measured in the presence of H2O in a fixed bed reactor, during multiple cycles at various temperature conditions (CO2 absorption at 50–100 °C and regeneration at 130–400 °C). The KAlI30, KCaI30, and KMgI30 sorbents formed new structures such as KAl(CO3)2(OH)2, K2Ca(CO3)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely convert to the original K2CO3 phase at temperatures below 200 °C, during the CO2 absorption process in the presence of 9 vol.% H2O. In the case of KACI30, KTiI30, and KZrI30, only a KHCO3 crystal structure was formed during CO2 absorption. The formation of active species, K2CO3·1.5H2O, by the pretreatment with water vapor and the formation of the KHCO3 crystal structure after CO2 absorption are important factors for absorption and regeneration, respectively, even at low temperatures (130–150 °C). In particular, the KTiI30 sorbent showed excellent characteristics with respect to CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (87 mg CO2/g sorbent) without the pretreatment with water vapor, unlike KACI30, and a fast and complete regeneration at a low temperature condition (1 atm, 150 °C). In addition, the higher total CO2 capture capacity of KMgI30 (178.6 mg CO2/g sorbent) than that of the theoretical value (95 mg CO2/g sorbent) was explained through the contribution of the absorption ability of MgO support. In this review, we introduce the CO2 capture capacities and regeneration properties of several potassium-based sorbents, the changes in the physical properties of the sorbents before/after CO2 absorption, and the role of water vapor and its effects on CO2 absorption.  相似文献   

9.
A new chelating sorbent for metal ions was prepared by modification of chemically modified silica – LiChroprep-NH2 with Calcon. The molecular mechanism of binding this reagent to the surface of the applied carrier is presented. The properties of this sorbent were compared to analogous sorbents with a plain silica carrier and chemically modified silicas – LiChroprep-RP containing Calcon. The advantages of the new sorbent compared to the silica and LiChroprep-RP chelating sorbents are demonstrated. The sorbent obtained was applied as stationary phase in solid-phase extraction (SPE) for separations of some chosen mixtures of metal ions and for additional purification of aqueous solutions of salts of alkali metals from trace amounts of heavy metals. The multiple use of the sorbent based on LiChroprep-NH2 in sorption-desorption processes of metal ions without deterioration of its sorption capacity is demonstrated.  相似文献   

10.
Blast furnace slag was leached using HCl to prepare lithium-based sorbents for CO2 capture, and chemical composition and phase of the acid leaching slag were determined by X-ray fluorescence analysis. The microstructure and morphology of both sorbents were characterized by scanning electron microscope and X-ray diffraction. The absorption capacity of both sorbents was observed non-isothermally and isothermally using thermogravimetric analysis, and 12 carbonation and calcination cycles were conducted to observe cycling stability. Controlling step of absorption process was determined by fitting the isothermal graphs using a double exponential model. The results show that 98.33% amorphous SiO2 can be obtained when the blast furnace slag was treated at 373 K for 10 h. Purified lithium-based sorbent by acid leaching slag (LBS-ALS) shows dense polyhedral particles with particle size between 25 and 120 μm. LBS-ALS shows similar absorption capacity with pure Li4SiO4 (P-Li4SiO4), but narrower absorption temperature range at non-isothermal absorption condition. The double exponential model fits well with the isothermal graphs for LBS-ALS and P-Li4SiO4, and diffusion of CO2 is the controlling step of the absorption process at lower temperature. LBS-ALS shows different controlling mechanism for desorption process compared with P-Li4SiO4. LBS-ALS maintains higher absorption capacity after 12 cycles in 100% CO2 flow.  相似文献   

11.
In general, the amount of radiocesium sorbed by the five sorbents with 0.01 mol·dm–3 NaCl was in order zeolite > NiFeCN–SiO2 > montmorillonite > aerogel > silica gel. Addition of humic acid solution to the sorbents depressed the sorption of cesium by all sorbents, except for NiFeCN–SiO2 was not seen, with the greatest effect showing to the aerogel. The presence of humic acid resulted in an enhanced desorption of cesium from zeolite, NiFeCN–SiO2 and to a lesser extent from montmorillonite and silica gel. The order of cesium retention following desorption for both sorbent and sorbent/humic-acid mixtures was zeolit > NiFeCN–SiO2 > montmorillonite > silica gel. The presence of humic acid resulted in decreasing of distribution coefficient values for both sorption and desorption processes.  相似文献   

12.
Phosphorus(V) sorption on sorbents based on aminopolystyrene and 4-amino-N-azobenzenesfulamide from aqueous solutions is studied. The following sorption parameters are determined: the optimum acidity, pHopt; 50% sorption pH, pH50; optimal time τ, min; quantitative-sorption temperature; and phosphorus(V) sorption capacity of the sorbent (SCS). Sorption isotherms are plotted.  相似文献   

13.
The kinetics of the CO2 sorption by a composite sorbent K2CO3 in Al2O3 was studied in a gradientless adsorber at 295 K. The order of the sorption rate with respect to the CO2 concentration was found to be n = 1.04 ± 0.07. The sorption rate constants were evaluated for sorbent grains of various sizes between 0.25 and 2.1 mm. It was shown that the rate constant is proportional to the grain reciprocal radius. The dynamic capacity was obtained as a function of the CO2 concentration. The maximum sorption capacity was found to be 83 mg of CO2 per 1 g of the sorbent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
以P123为模板,1,2-二(三甲氧基硅基)乙烷(BTME)为硅源合成了介孔氧化硅纳米管(E-SNTs).将ESNTs经过聚乙烯亚胺(PEI)修饰后制得吸附剂用于捕捉CO2.对吸附剂进行了透射电镜(TEM)、物理吸附、傅里叶变换红外(FTIR)光谱、热重分析(TGA)等表征.E-SNTs-PEI吸附剂的最佳CO2吸附温度为75°C.吸附剂的CO2吸附量随着PEI负载量的增加呈现先增大后减小的趋势,其中50%为最佳负载量,此时吸附剂的吸附量最大为3.32 mmol·g-1.相比较SBA-15基吸附剂,E-SNTs基吸附剂具有更优异的吸附性能.在有水汽的存在下,吸附剂E-SNTs-50的CO2吸附量达到3.75 mmol·g-1.经过四次循环吸脱附实验测试E-SNTs-PEI吸附剂的稳定性能,结果表明其CO2吸附量基本不变,该吸附剂表现出较好的稳定性和可再生能力.  相似文献   

15.
An excessive amount of CO2 is the leading cause of climate change, and hence, its reduction in the Earth''s atmosphere is critical to stop further degradation of the environment. Although a large body of work has been carried out for post-combustion low-temperature CO2 capture, there are very few high temperature pre-combustion CO2 capture processes. Lithium silicate (Li4SiO4), one of the best known high-temperature CO2 capture sorbents, has two main challenges, moderate capture kinetics and poor sorbent stability. In this work, we have designed and synthesized lithium silicate nanosheets (LSNs), which showed high CO2 capture capacity (35.3 wt% CO2 capture using 60% CO2 feed gas, close to the theoretical value) with ultra-fast kinetics and enhanced stability at 650 °C. Due to the nanosheet morphology of the LSNs, they provided a good external surface for CO2 adsorption at every Li-site, yielding excellent CO2 capture capacity. The nanosheet morphology of the LSNs allowed efficient CO2 diffusion to ensure reaction with the entire sheet as well as providing extremely fast CO2 capture kinetics (0.22 g g−1 min−1). Conventional lithium silicates are known to rapidly lose their capture capacity and kinetics within the first few cycles due to thick carbonate shell formation and also due to the sintering of sorbent particles; however, the LSNs were stable for at least 200 cycles without any loss in their capture capacity or kinetics. The LSNs neither formed a carbonate shell nor underwent sintering, allowing efficient adsorption–desorption cycling. We also proposed a new mechanism, a mixed-phase model, to explain the unique CO2 capture behavior of the LSNs, using detailed (i) kinetics experiments for both adsorption and desorption steps, (ii) in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements, (iii) depth-profiling X-ray photoelectron spectroscopy (XPS) of the sorbent after CO2 capture and (iv) theoretical investigation through systematic electronic structure calculations within the framework of density functional theory (DFT) formalism.

Capturing CO2 before its release. Lithium silicate nanosheets showed high CO2 capture capacity (35.3 wt%) with ultra-fast kinetics (0.22 g g−1 min−1) and enhanced stability at 650 °C for at least 200 cycles, due to mixed-phase-model of CO2 capture.  相似文献   

16.
Sorption of TcVII from solutions of various compositions with new sorbents prepared by the noncovalent immobilization of (thia)calix[4]arenes on the Amberlite XAD-7™ support was studied. The sorbents studied efficiently extract technetium(vii) from both acidic and alkaline media. The sorption capacity of the sorbent with thiacalix[4]arene groups is superior to that of the sorbents with calix[4]arene groups and several times higher than that of the sorbents previously proposed for the sorption of TcVII. Technetium(vii) is sorbed by this sorbent as 1: 1 and 1: 2 thiacalix[4]arene—NH4TcO4 and 1: 1 and 1: 2 thiacalix[4]arene—NaTcO4 complexes.  相似文献   

17.
The physicochemical properties of chelating polymer sorbents (CPSs), derivatives of poly(styrene-2-hydroxy-〈1-azo-1′〉-2′-hydroxybenzene), are studied with respect to copper and lead ions. The following sorption parameters are determined: the optimum acidity, temperature, and duration; the sorption capacity of the sorbent (SCS); and stability constants of polychelates. Quantitative correlations are found between the dissociation constants (pKa) of the analytical functional group (AFG) of the sorbent, and the pH50 of chelation of the tested metals; between p Ka and the stability of the complexes (logβ); and between pKa and the charge of the oxygen atom of the complexing group (z); these correlations are intended for use in elucidating the effect of the structural features and acid-base properties of the AFG on the chemisorption parameters of copper(II) and lead(II). These correlations predict the physical-chemical properties of sorbents and the sorption parameters of trace elements for preconcentrating and separating them from biological, natural, and technical objects  相似文献   

18.
The potential advantages of applying encapsulated ionic liquid (ENIL) to CO2 capture by chemical absorption with 1‐butyl‐3‐methylimidazolium acetate [bmim][acetate] are evaluated. The [bmim][acetate]‐ENIL is a particle material with solid appearance and 70 % w/w in ionic liquid (IL). The performance of this material as CO2 sorbent was evaluated by gravimetric and fixed‐bed sorption experiments at different temperatures and CO2 partial pressures. ENIL maintains the favourable thermodynamic properties of the neat IL regarding CO2 absorption. Remarkably, a drastic increase of CO2 sorption rates was achieved using ENIL, related to much higher contact area after discretization. In addition, experiments demonstrate reversibility of the chemical reaction and the efficient ENIL regeneration, mainly hindered by the unfavourable transport properties. The common drawback of ILs as CO2 chemical absorbents (low absorption rate and difficulties in solvent regeneration) are overcome by using ENIL systems.  相似文献   

19.
Reducing the emission of greenhouse gases, such as CO2, requires efficient and reusable capture materials. The energy for regenerating sorbents is critical to the cost of CO2 capture. Here, we design a series of photoswitchable CO2 capture molecules by grafting Lewis bases, which can covalently bond CO2, to azo‐based backbones that can switch configurations upon light stimulation. The first‐principles calculations demonstrate that intramolecular hydrogen bonds are crucial for enlarging the difference of CO2 binding strengths to the cis and trans isomers. As a result, the CO2–sorbent interaction can be light‐adjusted from strong chemical bonding in one configuration to weak bonding in the other, which may lead to a great energy reduction in sorbent regeneration.  相似文献   

20.
Amine double-functionalized adsorbents were fabricated using silica gel as supports and their capabilities for CO2 capture were examined. Aminopropyltrimethoxysilane (1N-APS), and N1-(3-trimethoxysilylpropyl)diethylenetriamine (3N-APS) were used as grafted amine compounds, and tetraethylenepentamine and polyethyleneimine were used as impregnated species. The influence of double-functionalization method on the CO2 adsorption performance and textural properties of adsorbents was investigated. The adsorption capacity, the amine efficiency, and the thermal stability of double-functionalized sorbents depend strongly upon molecular variables associated with two different functional states (i.e., chemically grafted and physically impregnated amines). The temperature dependence of adsorption isotherms reveals that the CO2 adsorption behavior in the double-functionalized adsorbents follow the diffusion limitation model proposed by Xu et al. (Energy Fuels 16:1463–1469, 2002) where the CO2 adsorption is helped by the diffusion of impregnated amines. It is also found that the adsorption isotherm in the double-functionalized sorbent system with a proper choice for grafted and impregnated amines is nearly independent of temperature, which may offer a novel means to fabricate practically useful sorbents that can be used in a wide range of temperature without loss of CO2 adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号