首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The large-scale turbulence and high air content in a hydraulic jump restrict the application of many traditional flow measurement techniques. This paper presents a physical modelling of hydraulic jump, where the total pressure and air–water flow properties were measured simultaneously with intrusive probes, namely a miniature pressure transducer and a dual-tip phase-detection probe, in the jump roller. The total pressure data were compared to theoretical values calculated based upon void fraction, water depth and flow velocity measured by the phase-detection probe. The successful comparison showed valid pressure measurement results in the turbulent shear region with constant flow direction. The roller region was characterised by hydrostatic pressure distributions, taking into account the void fraction distributions. The total pressure fluctuations were related to both velocity fluctuations in the air–water flow and free-surface dynamics above the roller, though the time scales of these motions differed substantially.  相似文献   

2.
The air entrainment characteristics of three separate Froude number hydraulic jumps are investigated numerically using an unsteady RANS, realizable kε turbulence model, with a Volume of Fluid treatment for the free surface. Mean velocity profiles, average void fraction, and Sauter mean diameter compare favorably with experimental data reported in literature. In all simulations, time-averaged void fraction profiles show good agreement with experimental values in the turbulent shear layer and an accurate representation of interfacial aeration at the free surface. Sauter mean diameter is well represented in the shear layer, and free surface entrainment results indicate bubble size remains relatively unchanged throughout the depth of the jump. Several different grid resolutions are tested in the simulations. Significant improvements in void fraction and bubble size comparison are seen when the diameter to grid size ratio of the largest bubbles in the shear layer surpasses eight. A three-dimensional simulation is carried out for one Froude number jump, showing an improvement in the prediction of entrained air and bubble size compared with two-dimensional results at a substantial increase in computation time. An analysis of three-dimensional vorticity shows a complex interaction between spanwise and streamwise vortical structures and entrained air bubbles. The jump is similar to a turbulent mixing layer, constrained by the free surface, with vortex pairing and subsequent fluctuations in free surface elevation. Downstream fluctuations of the toe are associated with a roll up of the primary spanwise vortex, fluctuations of the free surface, and counter-rotating streamwise vortex pairs. The action of these flow structures is likely responsible for the improvement in three-dimensional results.  相似文献   

3.
This paper describes measurements of void fractions, bubble frequencies and bubble sizes in hydraulic jumps with Froude numbers 2.0, 2.4, 3.7 and 4.8. In each case data were obtained with a dual-tip optical fibre probe at a large number of points throughout the jump. Across the lower part of the flow, dominated by air entrainment into a region of turbulent shear, void fractions follow a Gaussian distribution. In the upper region, dominated by interactions with the free surface, the void fraction follows the form of an error function. The intersection between these two profiles provides a well-defined boundary between the two regions. Comparisons are made with measurements at higher Froude numbers [by Chanson, H., Brattberg, T., 2000. Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow 26, 583–607] revealing a very large measure of compatibility between the two sets of data.  相似文献   

4.
The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.  相似文献   

5.
A hydraulic jump is a flow singularity characterised by a significant amount of air entrainment in the shear zone. The air is entrapped at the jump toe that is a discontinuity between the impinging flow and the roller. The impingement point is a source of air bubbles, as well as a source of vorticity. Herein the convective transport of air bubbles in the jump roller is re-visited. Some analytical extension is presented and the theoretical results are compared with some laboratory experiments conducted in a large-size facility operating at large Froude numbers. The turbulent air bubble mixing coefficient was found to increase linearly with increasing distance and be independent of the Froude and Reynolds numbers. Overall the study highlighted some seminal features of the air–water shear layer in hydraulic jumps with large Froude numbers (5.1 < Fr1 < 11.2). The air bubble entrainment in the mixing zone was a convective transport process, although there was some rapid flow de-aeration for all Froude numbers.  相似文献   

6.
A hydraulic jump is a sudden transition from supercritical to subcritical flow. It is characterized by a highly turbulent roller region with a bubbly two-phase flow structure. The present study aims to estimate the void fraction in a hydraulic jump using a flow visualization technique. The assumption that the void fraction in a hydraulic jump could be estimated based on images’ pixel intensity was first proposed by Mossa and Tolve (J Fluids Eng 120:160–165, 1998). While Mossa and Tolve (J Fluids Eng 120:160–165, 1998) obtained vertically averaged air concentration values along the hydraulic jump, herein we propose a new visualization technique that provides air concentration values in a vertical 2-D matrix covering the whole area of the jump roller. The results obtained are found to be consistent with new measurements using a dual-tip conductivity probe and show that the image processing procedure (IPP) can be a powerful tool to complement intrusive probe measurements. Advantages of the new IPP include the ability to determine instantaneous and average void fractions simultaneously at different locations along the hydraulic jump without perturbing the flow, although it is acknowledged that the results are likely to be more representative in the vicinity of sidewall than at the center of the flume.  相似文献   

7.
Free-surface fluctuations and turbulence in hydraulic jumps   总被引:1,自引:0,他引:1  
A hydraulic jump is the highly turbulent transition between a high-velocity impinging flow and a turbulent roller. The jump flow is characterised by some substantial air bubble entrainment, spray and splashing. In the present study, the free-surface fluctuations and air-water properties of the hydraulic jump roller were investigated physically for relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the mean free surface profile was well defined, and the time-averaged free-surface elevation corresponded to the upper free-surface, with the quantitative values being close to the equivalent clear-water depth. The turbulent fluctuation profiles exhibited a maximum in the first part of the hydraulic jump roller. The free-surface fluctuations presented some characteristic frequencies between 1.4 and 4 Hz. Some simultaneous free-surface measurements at a series of two closely located points yielded the free-surface length and time scales of free-surface fluctuations in terms of both longitudinal and transverse directions. The length scale data seemed to depend upon the inflow Froude number, while the time scale data showed no definite trend. Some simultaneous measurements of instantaneous void fraction and free-surface fluctuations exhibited different features depending upon the phase-detection probe sensor location in the different regions of the roller.  相似文献   

8.
A hydraulic jump is the rapid transition from a supercritical to subcritical free-surface flow. It is characterised by strong turbulence and air bubble entrainment. New air–water flow properties were measured in hydraulic jumps with partially developed inflow conditions. The data set together with the earlier data of Chanson (Air bubble entrainment in hydraulic jumps. Similitude and scale effects, 119 p, 2006) yielded similar experiments conducted with identical inflow Froude numbers Fr 1 = 5 and 8.5, but Reynolds numbers between 24,000 and 98,000. The comparative results showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. The present comparative analysis demonstrated quantitatively that dynamic similarity of two-phase flows in hydraulic jumps cannot be achieved with a Froude similitude. In experimental facilities with Reynolds numbers up to 105, some viscous scale effects were observed in terms of the rate of entrained air and air–water interfacial area.  相似文献   

9.
The hydraulic jump is the sudden transition from a high-velocity open channel flow regime to a subcritical flow motion. The flow properties may be solved using continuity and momentum considerations. In this review paper, recent advances in turbulent hydraulic jumps are developed: the non-breaking undular hydraulic jump, the positive surge and tidal bore, and the air bubble entrainment in hydraulic jumps with roller. The review paper demonstrates that the hydraulic jump is a fascinating turbulent flow motion and the present knowledge is insufficient, especially at the scales of environmental and geophysical flows.  相似文献   

10.
In an estuary, a tidal bore is a hydraulic jump in translation generated at the leading edge of the flood tide during the early flood tide under spring macrotidal conditions in a narrow funnelled channel. After formation, the bore is traditionally analysed as a hydraulic jump in translation and its leading edge is characterised by a breaking roller for Fr1 > 1.3–1.5. Herein new unsteady experiments were conducted to investigate in details the upstream propagation of breaking bore roller. The toe perimeter shape fluctuated rapidly with transverse distance and time. A characteristic transverse wave length of the toe perimeter was observed. Both the standard deviation of toe perimeter location and characteristic transverse wave length were comparable to field observations. The celerity of the roller toe fluctuated rapidly with time and space. The instantaneous longitudinal profile of the roller free-surface showed significant temporal and spatial fluctuations. Although the bore propagation may be analysed in an integral form in first approximation, the rapid fluctuations in roller toe perimeter and free-surface profiles indicated a strongly three-dimensional turbulent flow motion.  相似文献   

11.
A hydraulic jump is characterized by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air–water flow measurements were performed in a large-size facility using two types of phase-detection intrusive probes: i.e. single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent integral time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of Chanson [H. Chanson, Bubbly flow structure in hydraulic jump, Eur. J. Mech. B/Fluids 26 (3) (2007) 367–384], providing the turbulent scales of the eddy structures advecting the air bubbles in the developing shear layer. The length scale Lxz is an integral air–water turbulence length scale which characterized the transverse size of the large vortical structures advecting the air bubbles. The experimental data showed that the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e. Lxz/d1 = 0.2–0.8, with Lxz increasing towards the free-surface.  相似文献   

12.
13.
水下欠膨胀高速气体射流的实验研究   总被引:14,自引:0,他引:14  
戚隆溪  曹勇  王柏懿 《力学学报》2000,32(6):667-675
采用实验途径研究了下水高速气体射流的动力学特性,研制了水下高速气体射流实验系统并发展了相应的测试手段。实验中,用插入式静压探针测量了射流轴线静压分布;用γ射线衰减法测量了径向空隙率分布,从而揭示了水下高速气体射流均压和掺混两个过程的基本规律。测量结果表明:水下高速气体射流在欠膨胀工况下运行时,近场将出现含有复杂波系结构的膨胀压缩区域,由于气水的掺混作用,水下欠膨胀气体射流均压化过程比空气中衰减得快。测量结果还表明,水下射流在近场区的混合层由气水两相占据,其流态从靠近气体侧的液滴流型过渡到靠近液体侧的气泡流型。  相似文献   

14.
The bubble and liquid turbulence characteristics of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. The bubble characteristics were measured using a dual optical probe, while the liquid-phase turbulence was measured using hot-film anemometry. Measurements were performed at six liquid superficial velocities in the range of 0.2–0.68 m/s and gas superficial velocity from 0.005 to 0.18 m/s, corresponding to an area average void fraction from 1.2% to 15.4%. At low void fraction flow, the radial void fraction distribution showed a wall peak which changed to a core peak profile as the void fraction was increased. The liquid average velocity and the turbulence intensities were less uniform in the core region of the pipe as the void fraction profile changed from a wall to a core peak. In general, there is an increase in the turbulence intensities when the bubbles are introduced into the flow. However, a turbulence suppression was observed close to the wall at high liquid superficial velocities for low void fractions up to about 1.6%. The net radial interfacial force on the bubbles was estimated from the momentum equations using the measured profiles. The radial migration of the bubbles in the core region of the pipe, which determines the shape of the void profile, was related to the balance between the turbulent dispersion and the lift forces. The ratio between these forces was characterized by a dimensionless group that includes the area averaged Eötvös number, slip ratio, and the ratio between the apparent added kinetic energy to the actual kinetic energy of the liquid. A non-dimensional map based on this dimensionless group and the force ratio is proposed to distinguish the conditions under which a wall or core peak void profile occurs in bubbly flows.  相似文献   

15.
Hamed Sarkardeh 《Meccanica》2017,52(15):3629-3643
In the present study, a numerical investigation was performed to estimate air entrainment rates due to intake vortices in different hydraulic conditions. The numerical model was verified with the experimental data. The agreement between numerical and experimental results for air entrainment rates and circulation was good. Regarding formed funnel shape flow pattern in the reservoir towards the horizontal intake, its boundaries at presence of vortices were analyzed. By considering the minimum air entrainment ratio as a new approach, critical submergence was also calculated numerically. Results showed that allowing minimum air entrainment ratio of β = 1 × 10?5 can cause critical submergence decreases at least about 12%. Moreover, turbulence analysis and discussion were performed in the presence of vortex at the intake. This numerical simulation may be helpful to make a deeper understanding in determining the amount of entrained air and turbulence analysis in the presence of vortex and the critical submergence at horizontal intakes.  相似文献   

16.
A four-equation, two-fluid model of two-component flow has been developed to study the effects of air entrainment on the pressure transients in a pumping installation. A semi-implicit hydrodynamic numerical scheme is applied. Free and dissolved gases in the fluid and cavitation at the gas saturation pressure are modeled. The mechanism and behaviors of the pressure transients are discussed. Numerical experiments show that the first pressure peak is mainly dominated by two factors: one is the delay in wave reflection from the reservoir; the other is the change of wave speed in the mixture, which directly cause changes in wave speed. The magnitude of the first pressure peak depends on the overlapping of the effects of these two factors. The air volume at the check valve is mainly controlled by the local pressure there and the initial air void fraction. Comparably, the air volume at peak level is dependent on the local pressure and air release with initial air entrainment less than 10-2, but dependent on the local pressure, air release and initial air void fraction together with initial air entrainment greater than 10-2.  相似文献   

17.
In this study a detached eddy simulation (DES) model, which belongs to the group of hybrid URANS/LES turbulence models, is used for the simulation of vortex shedding behind a triangular obstacle. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS shear-stress transport (SST) model is used. In the other regions with higher grid resolution a LES model, which uses a transport equation for the turbulent subgrid energy, is applied. The DES model is first investigated for two standard test cases, namely decaying homogeneous isotropic turbulence and the backward facing step, respectively. For the decaying homogeneous isotropic turbulence test case the evolution of the energy spectra in wavenumber space for different times are studied for both the DES and a Smagorinsky type LES model. Different grid resolutions are analyzed with a special emphasis on the modeling constant connecting the filter length scale to the grid size. The results are compared to experimental data. The backward facing step test case is used to study the model behavior for a case with a transition region between a RANS modeling approach close to the wall and LES based modeling in the intense shear flow region. The final application is the simulation of the vortex shedding behind a triangular obstacle. First, the influence of the inlet condition formulation is studied in detail as they can have a significant influence especially for LES based models. Detailed comparisons between simulation and experiment for the flow structure past the obstacle and statistical quantities such as the shedding frequency are shown. Finally the additional temporal and spatial information provided by the DES model is used to show the predicted anisotropy of turbulence.  相似文献   

18.
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble–liquid two-phase turbulence of the multiple bubble–liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.The project supported by the China Special Funds for Major State Basic Research (G-1999-0222-08) and the Innovation and Technology Commission of Hong Kong and Aoyagi (H.K.) Ltd, Hong Kong, under the Grant No. UIM/122. The English text was polished by Keren Wang.  相似文献   

19.
Strong flow entrainment has been observed downstream of spillways constructed with flow deflectors. This water entrainment has important environmental and ecological impacts because it improves the mixing of powerhouse and spillway flows, but may negatively impact fish migration or create adverse flow conditions.

Most studies found in the literature attempt to explain this entrainment with turbulent mixing. Both reduced-scale hydraulic models and single-phase, isotropic RANS models grossly under-predict the degree of entrainment observed in prototypes. In this paper, an anisotropic model that accounts for the bubble volume fraction and attenuation of the normal velocity fluctuations at the free surface is presented. The model adequately predicts the main mechanisms causing water entrainment and compares well against experimental data for a round surface jet and for Brownlee Dam at model scale. It is shown that appropriate entrainment can only be captured if the turbulence anisotropy and the two-phase nature of the flow are modelled.  相似文献   

20.
Free-surface fluctuations in hydraulic jumps: Experimental observations   总被引:1,自引:0,他引:1  
A hydraulic jump is the rapid and sudden transition from a high-velocity supercritical open channel flow to a subcritical flow. It is characterised by the dynamic interactions of the large-scale eddies with the free-surface. New series of experimental measurements were conducted in hydraulic jumps with Froude numbers between 3.1 and 8.5 to investigate these interactions. The dynamic free surface measurements were performed with a non-intrusive technique while the two-phase flow properties were recorded with a phase-detection probe. The shape of the mean free surface profile was well defined and the turbulent fluctuation profiles highlighted a distinct peak of turbulent intensity in the first part of the jump roller, with free-surface fluctuation levels increasing with increasing Froude number. The dominant free-surface fluctuation frequencies were typically between 1 and 4 Hz. A comparison between the acoustic sensor signals and conductivity probe data suggested that the air–water “free-surface” detected by the acoustic sensor corresponded to about the boundary between the turbulent shear layer and the upper free-surface layer. Simultaneous measurements of free surface and bubbly flow fluctuations for Fr = 5.1 indicated that the frequency ranges of both sensors were similar (F < 5 Hz) whatever the position downstream of the toe. The present results highlighted that the dynamic free-surface measurements can be conducted successfully using acoustic displacement meters, and the time-averaged depth measurements was a physical measure of the free-surface location in hydraulic jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号