首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

2.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

3.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

4.
The lanthanide selenidogermanates [{Eu(en)3}2(μ‐OH)2]Ge2Se6 ( 1 ), [{Ho(en)3}2(μ‐OH)2]Ge2Se6 ( 2 ), and [{Ho(dien)2}2(μ‐OH)2]Ge2Se6 ( 3 ) (en = ethylenediamine, dien = diethylenetriamine) were solvothermally prepared by the reactions of Eu2O3 (or Ho2O3), germanium, and selenium in en and dien solvents respectively. Compounds 1 – 3 are composed of selenidogermanate [Ge2Se6]4– anion and dinuclear lanthanide complex cation [{Ln(en)3}2(μ‐OH)2]4+ (Ln = Eu, Ho) or [{Ho(dien)2}2(μ‐OH)2]4+. The [Ge2Se6]4– anion is composed of two GeSe4 tetrahedra sharing a common edge. The dinuclear lanthanide complex cations are built up from two [Ln(en)3]3+ or [Ho(dien)2]3+ ions joined by two μ‐OH bridges. All lanthanide(III) ions are in eight‐coordinate environments forming distorted bicapped trigonal prisms. In 1 – 3 , three‐dimensional supramolecular networks of the anions and cations are formed by N–H ··· Se and N–H ··· O hydrogen bonds. To the best of our knowledge, 1 – 3 are the first examples of selenidogermanate salts with lanthanide complex counter cations.  相似文献   

5.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

6.
The heteroleptic neutral tri‐tert‐butoxysilanethiolate of cobalt(II) incorporating ammonia as additional ligand ( 1 ) has been prepared by the reaction of a cobalt(II) ammine complex with tri‐tert‐butoxysilanethiol in water. Complex 1 , dissolved in hexane, undergoes oxidation in an ammonia saturated atmosphere to the ionic cobalt(III) compound 2 . Molecular and crystal structures of 1 and 2 have been determined by single crystal X‐ray structural analysis. 1 forms a dimeric molecule [Co{μ‐SSi(OBut)3}{SSi(OBut)3}(NH3)]2 with a folded central Co2S2 ring and distorted tetrahedral ligand arrangement at both CoII atoms (CoNS3 core). The product 2 is composed of the octahedral CoIII complex cation [Co{SSi(OBut)3}2(NH3)4]+ and the tri‐tert‐butoxysilanethiolate anion. Within the crystal two pairs of ions interact by hydrogen bonds forming well separated entities. 1 and 2 are the first structurally characterized cobalt thiolates where metal is also bonded to ammonia and 2 is the first cobalt(III) silanethiolate.  相似文献   

7.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5⋅thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B−B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

8.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507.  相似文献   

9.
[{Cp″Co}33-P)(μ3-PSe)], a Trinuclear Cluster with a PSe Ligand The cothermolysis of [Cp″Co(CO)2] ( 1 ), Cp″ = C5H3Bu-1.3, and P4 gives besides [{Cp″Co}33-P)2] ( 2 ) the cobalt Pn complexes [{Cp″Co}43-P)4] ( 3 ) and [{Cp″Co}2(μ, η2:2-P2)2] ( 4 ). 2 can be oxidized with grey selenium forming [{Cp″Co}33-P)(μ3-PSe)] ( 5 ) and [{Cp″Co}33-PSe)2] ( 6 ), complexes with the hitherto unknown PSe ligand. The crystal structure of 5 reveals a trigonal-bipyramidal Co3P2 skeleton with one μ3-PSe ligand.  相似文献   

10.
Novel tetrameric rhenium(V) complexes have been prepared from [ReNCl2(PPh3)2] and [ReN(PMe2Ph)(S2CNEt)2], respectively. [ReNCl2(PPh3)2] reacts with 1.5 equivalents of KS2CNEt2 in methanol to yield the unusual dark red species [{cyclo-ReN}4(S2CNEt2)6(MeOH)2(PPh3)2][BPh4]2 · CH2Cl2 · 2 H2O ( 1 ). The crystal structure of the tetramer (triclinic, space group P1, a = 13.842(2), b = 15.213(2), c = 16.796(3) Å, α = 67.88(1), β = 70.90(1), γ = 88.05(1)°, U = 3080.2(8) Å3, Z = 1) shows four rhenium atoms in a square configuration which are bridged via linear asymmetric Re≡N–Re groups with bond lengths of about 169 and 203 pm. The molecule contains a centre of symmetry with two distinct octahedral rhenium environments. The first rhenium environment contains two bidentate dithiocarbamate ligands which complete the octahedral geometry and the second contains a bidentate dithiocarbamate ligand, coordinated methanol and has retained a single phosphine coligand. A symmetric compound containing the {cyclo-ReN}4 core is obtained from the reaction of [ReN(PMe2Ph)(S2CNEt2)2] with Al2Cl6 in acetone. [{cyclo-ReN}4(S2CNEt2)4Cl4(PMe2Ph)4] · 2 acetone ( 2 ) forms red crystals (monoclinic, space group C2/c, a = 21.432(6), b = 13.700(3), c = 28.060(9) Å, β = 102.37(1)°, U = 8048(4) Å3, Z = 4) with each rhenium atom coordinated by a bidentate dithiocarbamato, a phosphine and a chloro ligand. The non-planar 8-membered {ReN}4 ring contains asymmetric Re≡N–Re bridges (mean values: 1.69 Å and 2.029 Å, respectively). In contrast, reaction of [ReNCl(S2CNEt2)(PMe2Ph)2] with one equivalent of K[S2CN(Me)CH2CH2NMe3]I gave the mixed dithiocarbamato-cation [ReN(S2CNEt2)(S2CN(Me)CH2CH2NMe3)(PMe2Ph)]+ ( 3 ) which was isolated as a tetraphenylborate salt.  相似文献   

11.
A new structural polyoxometalate motif, [{Ni4(OH)3AsO4}4(B‐α‐PW9O34)4]28?, which contains the highest nuclearity structurally characterized multi‐nickel‐containing polyanion to date, has been synthesized and characterized by single‐crystal X‐ray diffraction, temperature‐dependent magnetism and several other techniques. The unique central {Ni16(OH)12O4(AsO4)4} core shows dominant ferromagnetic exchange interactions, with maximum χmT of 69.21 cm3 K mol?1 at 3.4 K. Significantly, this structurally unprecedented complex is an efficient, water‐compatible, noble‐metal‐free catalyst for H2 production upon visible light irradiation (photosensitizer=[Ir(ppy)2(dtbbpy)][PF6]; sacrificial electron donor=triethylamine or triethanolamine). The highest turnover number of approximately 580, corresponding to a best quantum yield of approximately 4.07 %, is achieved when using triethylamine as electron donor in the presence of water. The mechanism of this photodriven process has been probed by time‐solved luminescence and by static emission quenching.  相似文献   

12.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

13.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

14.
The title compound was prepared by the reaction of Mo_3S_4(dtp)_4(H_2O)[ctp=S_2P(OEt)_2]with NaOAc·3H_2O and C_4H_8NCS_2NH_4.Crystallographic data:[Mo_3(μ_3-S)(μ-S)_2(μ-OAc)-(S_2CNC_4H_8)_3(O)_2]·0.5CH_2CI_2·2H_2O,Mr=980.18,triclinic,space group P,α=12.360(3),b=16.653(6),c=9.206(2)A,α=101.97(2),β=108.32(2),γ=86.14(3)°.V=1759.6(9)A~3,Z=2,Dc=1.85 g/cm~3,F(000)=962,μ(Mo K_α)=16.53 cm~(-1).Final R=0.044 for 4301 reflections with I≥3σ(I).This compoundmay be regarded as a mixed-valent trinuclear molybdenum cluster{Mo_2(V)Mo(Ⅳ)(μ_3-S)(μ-S)_2-(μ-OAc)(S_2CNC_4H_8)_3(O)_2}.The Mo-Mo distances are 2.783(1),2.833(1)and 3.374(2)A in the Mo_3non-equilateral triangle and there exist only two Mo-Mo bonds.The cluster was obtained by oxi-dation and ligand substitution of{Mo_3(μ_3-S)(μ-S)_3[μ-S_2P(OEt_2)][S_2P(OEt)_2]_3(H_2O)}.  相似文献   

15.
New Amido and Imido Bridged Complexes of Copper – Syntheses and Structures of [{Li(OEt2)}2][Cu(NPh2)3], [ClCuN(SnMe3)3], [{CuN(SnMe3)2}4], [Cu16(NH2tBu)12Cl16], [{CuNHtBu}8], [Li(dme)3][Cu6(NHMes)3(NMes)2], [PPh3(C6H4)CuNHMes], [{[Li(dme)][Cu(NHMes)(NHPh)]}2], and [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] The reactions of stannylated and lithiated amines with coppersalts (halogenides, thiocyanates) lead to amido and imido bridged complexes which contain one to twelve metal atoms. [{Li(OEt2)}2][Cu(NPh2)3] ( 1 ) results from the reaction of CuCl with LiNPh2 in the presence of trimethylphosphine. With N(SnMe3)3, CuCl reacts to the donor‐acceptor complex [ClCuN(SnMe3)3] ( 2 ) that is transformed into the tetrameric complex [{CuN(SnMe3)2}4] ( 3 ) by thermolysis. 3 can also be obtained by the reaction of LiN(SnMe3)2 with Cu(SCN)2. While terminally bound in 1 , the amido ligand is μ2‐bridging between copper atoms in compound 3 . The influence of the alkyl amide's leaving group can be seen from a comparison of the reactivity of Me3SnNHtBu and LiNHtBu, respectively. With Me3SnNHtBu, CuCl2 forms the polymeric compound [Cu16(NH2tBu)12Cl16] ( 4 ) whereas in the case of LiNHtBu with both CuCl and CuSCN, the complex [{CuNHtBu}8] ( 5 ) is obtained. The latter contains two planar Cu4N4‐rings similar to those in 3 . If a mesityl group is introduced at the lithium amide, different products are accessible. Both, CuBr and CuSCN, lead to the formation of [Li(dme)3][Cu6(NHMes)3(NMes)2] ( 6 ) whose anion consists of a prismatic copper core with μ2‐bridging amido and μ3‐bridging imido ligands. In the presence of PPh4Cl, a mixture of Cu(SCN)2 and LiNHMes enables an ortho‐metallation reaction that produces [PPh3(C6H4)CuNHMes] ( 7 ). From the reaction of CuSCN with LiNHMes and LiNHPh either the dimeric complex [{[Li(dme)][Cu(NHMes)(NHPh)]}2] ( 8 ) or the cluster [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] ( 9 ) results. The anion in 9 exhibits a cubo‐octahedron of copper atoms μ3‐bridged by (NPh)2–‐ligands. The solid state structures of compounds 1 – 9 have been determined by single crystal X‐ray diffraction.  相似文献   

16.
A new cluster compound {[Mo3(μ3-O)(μ-S)3(dtp)3(py)3][CdI(dtp)2]} (dtp=S2P(O-was obtained from the reaction of (Mo3OS3(dtp)4(H2O)] with a CdI2-Bu4NI mixture.The molecular structure is composed of a cluster cation [Mo3OS3(dtp)3(py)3]+ and the complex anion [CdI(dtp)2]-Crystal data:Triclinic,space group P1 with cell parameters a=1.4672(7),b=1.5356(5),c=1.6806(5) nm,α=74.59(3),β=67.89(4),7=78.86(3)°,V=3.364(2) nm3,and Z=2,least-squares refinement of 8941 reflections gives a final agreement factor of R=0.052,Rw=0.065.  相似文献   

17.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

18.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXVI. Formation and Structure of [{ cyclo ‐P4(PtBu2)4}{Ni(CO)2}2] [{cyclo‐P4(PtBu2)4}{Ni(CO)2}2] is formed by reaction of the cyclotetraphosphane P4(PtBu2)4 with [Ni(CO)4]. Each Ni(CO)2 unit is coordinated by two adjacent tBu2P groups forming two five‐membered P4Ni rings above and below the planar cyclotetraphosphane ring, respectively. The compound crystallizes in the triclinic space group P 1 (No. 2) with a = 893.29(5), b = 1140.75(7), c = 1235.52(8) pm, α = 109.179(7), β = 100.066(7), γ = 97.595(7)° and Z = 1.  相似文献   

19.
A novel mixed‐tribridged dimolybdenum(I) compound [Bn4N][Mo2(μ‐SPh)2(μ‐Cl)(CO)6] (1) has been synthesized from the reaction of Mo2(CO)3(SPh)2 with BU4NCl. Compound 1 was characterized by IR, UV‐Vis and 1H, 13C, 95Mo NMR spectroscopic analyses. The electrochemical behavior was measured by cyclic voltammetry, indicating a quasi‐reversible two‐electron transfer in one step. The crystal structure determined by X‐ray crystallography shows that 1 contains a [Mo2(μ‐S)2(μ‐Cl)]? core with a planar Mo2S2unit and a Cl bridge. The Mo? Mo distance is 0.28709(7) nm, and the Mo‐Cl‐Mo angle is 66.44(4)°. A newface‐sharing bioctahedral structure is discussed.  相似文献   

20.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号