首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes of the type [ReH(CO)5–n(PMe3)n] (n = 4, 3) were reacted with aldehydes, CO2, and RC?CCOOMe (R = H, Me) to establish a phosphine-substitutional effect on the reactivity of the Re–H bond. In the series 1–3 , benzaldehyde showed conversion with only 3 to afford a (benzyloxy)carbonyltetrakis(trimethylphosphine)rhenium complex 4 . Pyridine-2-carbaldehyde allowed reaction with all hydrides 1–3 . With 1 and 2 , the same dicarbonyl[(pyridin-2-yl)methoxy-O, N]bis(trimethylphosphine)rhenium 5b was formed with the intermediacy of a [(pyridin-2-yl)methoxy-O]-ligated species and extrusion of CO or PMe3, respectively. The analogous conversion of 3 afforded the carbonyl[(pyridin-2-yl)methoxy-O,N]tris(trimethylphosphine)rhenium ( 1 ) 7b . While 1 did not react with CO2, 2 and 3 yielded under relatively mild conditions the formato-ligated [Re(HCO2)(CO)(L)(PMe3)3] species ( 8 (L = CO) and 9 (L = PMe3)). Methyl propiolate and methyl butynoate were transformed, in the presence of 1 , to [Re{C(CO2Me)?CHR}(CO)3(PMe3)2] systems ( 10a (R = H), and 10b (R = Me)), with prevailing α-metallation and trans-insertion stereochemistry. Similarly, HC≡CCO2Me afforded with 2 and 3 , the α-metallation products [Re{C(CO2Me)?CH2}(CO)(L)(PMe3)3] 11 (L = CO) and 12 (L = PMe3). The methyl butyonate insertion into 2 resulted in formation of a mixture of the (Z)- and (E)-isomers of [Re{C(CO2Me)?CHMe} (CO)2(PMe3)3] ( 13a , b ). In the case of the conversion of 3 with MeC?CCO2Me, a Re–H cis-addition product [Re{(E)-C(CO2Me)?CHMe}(CO)(PMe3)4] ( 14 ) was selectively obtained. Complex 11 was characterized by an X-ray crystal-structure analysis.  相似文献   

2.
The reaction of (OC)4Re[μ-E-HC? C(CO2Me)CS2]Re(CO)4, 1 with EtNH2 yielded two new complexes: Re(CO)4[C(H)? C(CO2Me)C(NHEt)? S], 2 , (52%) and Re(CO)3(NH2Et)[C(H)? C(CO2Me)C(NHEt)=S], 3a (24%) by competitive attack of the EtNH2 at the dithiocarboxylate grouping and at the hydrogen substituted olefinic carbon atom in 1 . In both cases there is a loss of one of the rhenium groupings. The reaction of the sulfurized and oxygenated derivatives of 1, (OC)4Re[EC(H)C(CO2Me)CS2]Re(CO)4, 4a (E=S), 4b (E=O) with EtNH2 yielded Re(CO)4[C(H)=C(CO2Me)C(NHEt)=S], 5a , the parent carbonyl of 3a , by exclusive attack of the amine at the hydrogen substituted olefinic carbon atom. The reaction of (OC)4Re[μ-SC(S)C(CO2Me)C(H)S]Re(CO)4, 6a (an isomer of 4a ) with EtNH2 produced a similar result. The reaction of 4a with Et2NH yielded Re(CO)4[μ-S2C=C(CO2Me)C=NEt2], 5b an N-ethyl substituted derivative of 5a . These results indicate that the addition of certain heteroatoms can have a directing effect upon the reactivity of these compounds with amines. Compounds 2 and 5a were characterized by single crystal x-ray diffraction analyses. Crystal Data: For 2 : space group = P1, a = 10.782(1) Å, b = 14.721(2) Å, c = 9.940(2) Å, a = 91.57(1)°, β = 93.61(1)°, γ = 70.774(9)°, Z = 4, 4516 reflections, R = 0.047 and for 5a : space group = P21/n, a = 11.389(2) Å, b = 9.660(2) Å, c = 14.756(3) Å, β = 103.36(2)°, Z = 4, 1601 reflections, R = 0.022.  相似文献   

3.
Further investigations into the chemistry of the rhenacyclobutadiene complexes (CO)4Re(η2-C(R)C(CO2Me)C(X)) (1: R=Me, X=OEt (1a), O(CH2)3CCH (1b), NEt2 (1c); R=CHEt2, X=OEt (1d); R=Ph, X=OEt (1e)) are reported. Reactions of 1 with alkynes at reflux temperature of toluene and at ambient temperature either under photochemical conditions or in the presence of PdO yield ring-substituted η5-cyclopentadienylrhenium tricarbonyl complexes, 2. The symmetrical alkynes RCCR (R=Ph, Me, CO2Me) afford the pentasubstituted complexes (η5-C5(Me)(CO2Me)(OEt)(Ph)(Ph))Re(CO)3 (2d), (η5-C5(Me)(CO2Me)(OEt)(Me)(Me))Re(CO)3 (2e), (η5-C5(Me)(CO2Me)(OEt)(CO2Me)(CO2Me))Re(CO)3 (2f), and (η5-C5(Me)(CO2Me)(NEt2)(CO2Me)(CO2Me))Re(CO)3 (2i) on reaction with the appropriate 1, whereas the unsymmetrical alkynes RCCR″ (R=Ph; R″=H, Me) give either only one, (η5-C5(Me)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2a)), or both, (η5-C5(Me)(CO2Me) (OEt)(Ph)(Me))Re(CO)3 (2b) and (η5-C5(Me)(CO2Me)(OEt)(Me)(Ph))Re(CO)3 (2c), (η5-C5(Ph)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2g) and (η5-C5(Ph)(CO2Me)(OEt)(H)(Ph))Re(CO)3 (2h), of the possible products of [3 + 2] cycloaddition of alkyne to η2-C(R)C(CO2Me)C(X). Thermolysis of (CO)4Re(η2-C(Me)C(CO2Me)C(O(CH2)3CCH)) (1b) containing a pendant alkynyl group proceeds to (η5-C5(Me)(CO2Me)(O(CH2)3)H)Re(CO)3 (2j), a η5-cyclopentadienyl-dihydropyran fused-ring product. Competition experiments showed that each of PhCCH and MeO2CCCCO2Me reacts faster than PhCCPh with 1a. The results with unsymmetrical alkynes are rationalized by steric properties of substituents at the CC and ReC bonds and by a preference of ReC(Me) over ReC(OEt) to undergo alkyne insertion. A mechanism is proposed that involves substitution of a trans CO by alkyne in 1, insertion of alkyne into ReC bond to give a rhenabenzene intermediate, and collapse of the latter to 2. Complexes 1a and 1d undergo rearrangement in MeCN at reflux temperature to give rhenafuran-like products, (CO)4Re(κ2-OC(OMe)C(CHCR2)C(OEt)) (R=H (3a) or Et (3b)). The reaction of 1d also proceeds in EtCN, PhCN, and t-BuCN at comparable temperature, but is slower (especially in t-BuCN) than in MeCN. In pyridine at reflux temperature, 1a undergoes a similar rearrangement, with CO substitution, to give (CO)3(py)Re(κ2-OC(OMe)C(CHCEt2)C(OEt)) (4). A mechanism is proposed for these reactions. The sulfonium ylides Me2SCHC(O)Ph and Me2SC(CN)2 (Me2SCRR) react with 1a in acetonitrile at reflux temperature by nucleophilic addition of the ylide to the ReC(Me) carbon, loss of Me2S, and rearrangement to a rhenafuran-type structure to yield (CO)4Re(κ2-OC(OMe)C(C(Me)CRR)C(OEt)) (R=H, R=C(O)Ph (5a); R=RCN (5b)). All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy.  相似文献   

4.
Reactions of [ReH5(PMe2Ph)3] with alkynols HC≡CC(OH)(R)C≡CSiMe3 (R=tBu, iPr, 1‐adamantyl) in the presence of HCl give the vinylcarbyne complexes [Re{≡CCH?C(R)C≡CSiMe3}Cl2(PMe2Ph)3], which react with tBuMgCl to give [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3]. Treatment of [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3] with nBu4NF gives [Re{≡CCH?C(R)C≡CH}HCl(PMe2Ph)3], which first isomerizes to the bicyclic complexes [Re{CH?CH? C(R)?CCH?}Cl(PMe2Ph)3], and then to the rhenabenzynes [Re{≡CCH?C(R)CH?CH}Cl(PMe2Ph)3]. The NMR spectroscopic and structural data as well as the aromatic stabilization energy (ASE) and nucleus‐independent chemical‐shift (NICS) values suggest that these rhenabenzynes have aromatic character.  相似文献   

5.
The rhenacyclobutadienes (CO)4Re(η2- C(R)C(CO2Me)C(OR)) (2) undergo a number of reactions that mirror those of Fischer alkoxycarbene complexes. Thus, (CO)4Re(η2-C(Me)C(CO2Me)C(OEt)) (2a) can be deprotonated by LDA, Na[OBu-t], or Na[CH(CO2Me)2] to give the ylide-like conjugate base [(CO)4Re(η2-C(CH2)C(CO2Me)C(OEt)] (3), which was isolated as PPN(3). Li(3) undergoes deuteriation with DCl/D2O and alkylation with Et3OPF6 at ReCCH2, with the latter reaction affording (CO)4Re(η2-C(CH2Et)C(CO2Me)C(OEt)) (4). Repetition of the sequence deprotonation-ethylation on 4 generates (CO)4Re(η2-C(CHEt2)C(CO2Me)C(OEt)) (5). The nature of the alkoxy substituent in 2 can be varied by use of the rhenacyclobutenones Na[(CO)4Re(η2-C(R)C(CO2Me)C(O))] (Na(1)) in conjunction with AcCl and ROH to produce a series of new complexes (R=Ph, R=Et (2b); R=Me, R=CH2CHCH2 (2c), (CH2)3CCH (2d), Me (2e)). Aminolysis of 2a with the primary and secondary amines PhNH2, HO(CH2)2NH, p-TolNH2, and Et2NH yields the aminorhenacyclobutadiene complexes (CO)4Re(η2-C(Me)C(CO2Me)C(NHR or NR2)) (R2=Et2 (6a); R=Ph (6b), (CH2)2OH (6c), p-Tol (6d)). These complexes display lesser carbene-like character than their alkoxy counterparts 2, as evidenced by 1H and 13C NMR spectroscopic properties and lack of reactivity toward LDA by 6a. Reactions of each 2a and 6a with PPhMe2 at low temperature afford (CO)4Re(η2-C(Me)(PPhMe2)C(CO2Me)C(OEt)) (7) and (CO)3(PPhMe2)Re(η2-C(Me)C(CO2Me)C(NEt2)) (9), respectively, further in agreement with the more carbenoid nature of 2a than 6a. 7 undergoes conversion to (CO)3(PPhMe2)Re(η2-C(Me)C(CO2Me)C(OEt)) (8) upon heating. 2a reacts with each of (NH4)2[Ce(NO3)6], DMSO, EtNO2/Et3N, and Me3NO under various conditions to afford one or both of the oxygen atom insertion products into the ReC bonds, (CO)4Re(κ2-OC(Me)C(CO2Me)C(OEt)) (10) and (CO)4Re(κ2-C(Me)C(CO2Me)C(OEt)O) (11). In contrast, no reaction occurred between 2a and S8 on heating. However, 6a was converted to the NH insertion product (CO)4Re(κ2-NHC(Me)C(CO2Me)C(NEt2)) (12) by the action of H2NNH2 · H2O at 0 °C. All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy.  相似文献   

6.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

7.
1,3‐Dipoles of the type metallo nitrile ylide and metallo nitrile imine were prepared by mono‐α‐deprotonation of CH‐acidic {[W(CO)5CHCH2PPh3]PF6, M(CO)5CNCH2CO2R (M = Cr, W; R = Me, Et), [Pt(Cl)(CNCH2CO2Et)(PPh3)2]BF4} and NH‐acidic isocyanide complexes (Cr(CO)5CNNH2) and were stabilized by coordination to a second transition metal complex fragment {Cr(CO)5, [M(CO)5]+ (M = Mn, Re), [FeCp(CO)2]+, [Pt(Cl)(PR3)2]+ (R = Et, Ph)}. All dinuclear products 1 – 7 , 10 , and 11 are neutral species except [(Ph3P)2(Cl)Pt{μ2‐CNCH(CO2Et)}Pt(Cl)(PPh3)2]BF4 ( 8 ). Complex (OC)5W{μ2‐CNCH(CO2Et)}Pt(Cl)(PEt3)2 ( 5b ) was characterized by X‐ray diffraction. Twofold deprotonation/platination to give (OC)5Cr{μ3‐CNC(Ph)}[Pt(Cl)(PPh3)2]2 ( 9 ) was achieved in the case of Cr(CO)5CNCH2Ph.  相似文献   

8.
Reaction of Diphenoxyphosphorylchloride with N,N-disubstituted Ureas – Formation of Phosphorylated Biuret Compounds N′,N′-disubstituted N-diphenoxyphosphorylureas, (PhO)2P(O)? NH? CO? NR1R2 (R1 = R2 = Et, 1 ; n-Pr, 2 ; n-Bu, 3 ; i-Bu, 4 ; R1 = Me and R2 = Ph, 5 ) as well as phosphorylated biuret compounds, (PhO)2P(O)? NH? CO? NH? CO? NR1R2 are obtained in the reaction of diphenoxyphosphorylchloride with N,N-disubstituted ureas and triethylamine. The biuret derivatives are formed via (PhO)2P(O)NCO. Their yield rises if the reaction is carried out without amine. The X-ray crystal structure analysis of (PhO)2P(O)? NH? CO? NH? CO? NPr2, 8 , shows that dimers exist in the crystal with intermolecular as well as intramolecular hydrogen bonds. The framework formed by atoms P? N1? C1(O4)? N2? C2(O5)? N3(C3)C6 is planar. The existence of a rotation barrier along the bond C2–N3 was detected by NMR spectroscopy.  相似文献   

9.
Preparation and Oxidative Derivatisation of Phosphonothionic Esters The kind of the amine used influences decisively course and rate of the reaction of trialkyl phosphites, (RO)3P (R = Me, Et, Ph) with H2S in the presence of different amines (Et3N, Et2NH, Et2NPh, pyridine). Phosphonothionic esters, (RO)2P(S)H (R = Me, Et, Bu), are obtained in over 80% yield by using pyridine as base and an alkali alcoholate as catalyst. The oxidative derivatisation of phosphonothionic esters by means of CCI4 and protic (4-nitrophenol, 2,4,5-trichlorophenol, ammonia, piperidine, phenylhydrazine) or anionic nucleophiles (F?, NCS?, NCO?, CN?, N3?) (Atherton-Todd reaction) yields thiophosphoric acid derivatives (RO)2P(S)Nuc (R = Me, Et, Bu: Nuc = 4-nitrophenoxy, PhNHNH; R = Me, Et: Nuc = 2,4,5-trichlorophenoxy, F, NCS, N3; R = Me: NH2, C5H10N; R = Et: Nuc = CI, CN) and in some cases the dealkylated products (RO)P(Nuc)SO? (R = Me; Nuc = CI, F, NCS, CN). The phosphazenes (EtO)2P(S)? N = PPh3 and (MeO)2P(S)? N ? P(OEt)3, up to now unknown in literature, were obtained by treating thiophosphoryl azides with PPh3 or P(OEt)3, resp.  相似文献   

10.
The 1,1‐ethylboration of alkyn‐1‐yl‐chloro(methyl)silanes, Me2Si(Cl)? C?C? R ( 1 ) and Me(H)Si(Cl)? C?C? R ( 2 ) [R = Bu ( 2a ), CH2NMe2 ( 2b )] requires harsh reaction conditions (up to 20 days in boiling triethylborane), and leads to alkenes in which the boryl and silyl groups occupy cis ((E)‐isomers: 3a , 3b , 5a , 5b ) or trans positions ((Z)‐isomers in smaller quantities: 4b and 6b ). The alkenes are destabilized in the presence of SiH(Cl) and CH2NMe2 units ( 5b , 6b ). NMR data indicate hyper‐coordinated silicon by intramolecular N? Si coordination in 3b and 5b , by which, at the same time, weak Si? Cl? B bridges are favoured. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Two types of imidazoliophosphane with additional electron‐withdrawing substituents, such as alkoxy or imidazolio groups, are experimentally described and theoretically studied. Diethyl N,N′‐2,4,6‐methyl(phenyl)imidazoliophosphonite is shown to retain a P‐coordinating ability toward a {RhCl(cod)} (cod=cycloocta‐1,5‐diene) center, thus competing with the cleavage of the labile C? P bond. Derivatives of N,N′‐phenylene‐bridged diimidazolylphenylphosphane were isolated in good yield. Whereas the dicationic phosphane proved to be inert in the presence of [{RhCl(cod)}2], the monocationic counterpart was shown to retain the P‐coordinating ability toward a {RhCl(cod)} center, thus competing with the N‐coordinating ability of the nonmethylated imidazolyl substituent. The ethyl phosphinite version of the dication, thus possessing an extremely electron‐poor PIII center, was also characterized. According to the difference between the calculated homolytic and heterolytic dissociation energies, the N2C???P bond of imidazoliophosphanes with aryl, amino, or alkoxy substituents on the P atom is shown to be of dative nature. The P‐coordinating properties of imidazoliophosphanes with various combinations of phenyl or ethoxy substituents on the P atom and those of six diimidazolophosphane derivatives with zero, one, or two methylium substituents on the N atom, were analyzed by comparison of the corresponding HOMOs and LUMOs and by calculation of the IR C?O stretching frequencies of their [RhCl(CO)2] complexes. Comparison of the νCO values allows the family of the electron‐poor Im+PRR′ (Im=imidazolyl) potential ligands to be ranked in the following order versus (R,R′): P(OEt)3<(Ph,Ph)<(Ph,OEt)<(OEt,OEt)<PF3<(Ph,Im)<(Ph,Im+)<(OEt,Im+). The (Ph,Im) representative is therefore the least electron‐donating phosphane for which coordinating behavior toward a RhI center has been experimentally evidenced to date. Ultimate applications in catalysis could be envisaged.  相似文献   

12.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

13.
The aromatic osmacyclopropenefuran bicycles [OsTp{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(PiPr3)]BF4 (Tp=hydridotris(1‐pyrazolyl)borate) and [OsH{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(CO)(PiPr3)2]BF4, with the metal fragment in a common vertex between the fused three‐ and five‐membered rings, have been prepared via the π‐allene intermediates [OsTp(η2‐CH2=CCHCO2Et)(OCMe2)(PiPr3)]BF4 and [OsH(η2‐CH2=CCHCO2Et)(CO)(OH2)(PiPr3)2]BF4, and their aromaticity analyzed by DFT calculations. The bicycle containing the [OsH(CO)(PiPr3)2]+ metal fragment is a key intermediate in the [OsH(CO)(OH2)2(PiPr3)2]BF4‐catalyzed regioselective anti‐Markovnikov hydration of ethyl buta‐2,3‐dienoate to ethyl 4‐hydroxycrotonate.  相似文献   

14.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

15.
Reaction between 2‐(1H‐pyrrol‐1‐yl)benzenamine and 2‐hydroxybenzaldehyde or 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde afforded 2‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL1NH, 1a) or 2,4‐di‐tert‐butyl‐6‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL2NH, 1b). Both 1a and 1b can be converted to 2‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL3N, 2a) and 2,4‐di‐tert‐butyl‐6‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL4N, 2b), respectively, by heating 1a and 1b in toluene. Treatment of 1b with an equivalent of AlEt3 afforded [Al(Et2)(OL2NH)] (3). Reaction of 1b with two equivalents of AlR3 (R = Me, Et) gave dinuclear aluminum complexes [(AlR2)2(OL2N)] (R = Me, 4a; R = Et, 4b). Refluxing the toluene solution of 4a and 4b, respectively, generated [Al(R2)(OL4N)] (R = Me, 5a; R = Et, 5b). Complexes 5a and 5b were also obtained either by refluxing a mixture of 1b and two equivalents of AlR3 (R = Me, Et) in toluene or by treatment of 2b with an equivalent of AlR3 (R = Me, Et). Reaction of 2a with an equivalent of AlMe3 afforded [Al(Me2)(OL3N)] (5c). Treatment of 1b with an equivalent of ZnEt2 at room temperature gave [Zn(Et)(OL2NH)] (6), while reaction of 1b with 0.5 equivalent of ZnEt2 at 40 °C afforded [Zn(OL2NH)2] (7). Reaction of 1b with two equivalents of ZnEt2 from room temperature to 60 °C yielded [Zn(Et)(OL4N)] (8). Compound 8 was also obtained either by reaction between 6 and an equivalent of ZnEt2 from room temperature to 60 °C or by treatment of 2b with an equivalent of ZnEt2 at room temperature. Reaction of 2b with 0.5 equivalent of ZnEt2 at room temperature gave [Zn(OL4N)2] (9), which was also formed by heating the toluene solution of 6. All novel compounds were characterized by NMR spectroscopy and elemental analyses. The structures of complexes 3, 5c and 6 were additionally characterized by single‐crystal X‐ray diffraction techniques. The catalysis of complexes 3, 4a, 5a–c, 6 and 8 toward the ring‐opening polymerization of ε‐caprolactone was evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
On the Reactivity of the Ferriophosphaalkene (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] towards Propiolates HC≡C‐CO2R (R=Me, Et) and Acetylene Dicarboxylates RO 2C‐C≡C‐CO2R (R=Me, Et, tBu) The reaction of equimolar amounts of (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] 3 and methyl‐ and ethyl‐propiolate ( 2a, b ) or of 3 and dialkyl acetylene dicarboxylates 1a (R=Me), 1b (Et), 1c (tBu) afforded the five‐membered metallaheterocycles [Cp*(CO) =C(tBu)NMe2] ( 4a, b ) and [Cp*(CO) =C(tBu)NMe2] ( 5a—c ). The molecular structures of 4b and 5a were elucidated by single crystal X‐ray analyses. Moreover, the reactivity of 4b towards ethereal HBF4 was investigated.  相似文献   

17.
Fischer carbene complexes of the group VII transition metals (Mn and Re) containing at least two or three different transition metal substituents, all in electronic contact with the carbene carbon atom, were synthesized. The structural features and their relevance to bonding in the carbene multimetal compounds were investigated, as they represent indicators of possible reactivity sites in polymetallic carbene assemblies. For complexes of the type [ML(x){C(OR)R'}] (ML(x) = MnCp(CO)(2) or Re(2)(CO)(9)), ferrocenyl (Fc) was chosen as the R' substituent, while the OR substituent was systematically varied between an ethoxy or a titanoxy group, to yield the complexes 1a (ML(x) = MnCp(CO)(2), R = Et, R' = Fc), 2a (ML(x) = MnCp(CO)(2), R = TiCp(2)Cl, R' = Fc), 3a (ML(x) = Re(2)(CO)(9), R = Et, R' = Fc), and 4a (ML(x) = Re(2)(CO)(9), R = TiCp(2)Cl, R' = Fc). Direct lithiation of the ferrocene with n-BuLi/TMEDA at elevated temperatures, followed by the Fischer method of carbene preparation, resulted in formation of the novel biscarbene complexes with bridging ferrocen-1,1'-diyl (Fc') substituents [{π-Fe(C(5)H(4))(2)-C,C'}{C(OEt)ML(x)}(2)] (1b, ML(x) = MnCp(CO)(2); 3b, ML(x) = Re(2)(CO)(9)) or the unusual bimetallacyclic bridged biscarbene complexes [{π-TiCp(2)O(2)-O,O'}{π-Fe(C(5)H(4))(2)-C,C'}{CML(x)}(2)] (2b, ML(x) = MnCp(CO)(2); 4b, ML(x) = Re(2)(CO)(9)). The target compounds that were isolated displayed a variety of different geometric isomers and conformations. The greater reactivity of the binary dirhenium acylates in solution, compared to that of the cyclopentadienyl manganese acylate, resulted in a complex reaction mixture. Although the stabilization of hydroxycarbene or hydrido-acyl intermediates of dirhenium carbonyls could not be achieved, their existence in solution was confirmed by the isolation of [(π-H)(2)-(Re(CO)(4){C(O)Fc})(2)] (8), the unique dichloro-bridged biscarbene complex fac-[(π-Cl)(2)-(Re(CO)(3){C(OEt)Fc})(2)] (6), the known hydrido complex [Re(3)(CO)(14)H] (5), the acyl complex [Re(CO)(5){C(O)Fc}] (7), and the aldehyde-functionalized eq-[Re(2)(CO)(9){C(OTiCp(2)Cl)(Fc'CHO)}] (9).  相似文献   

18.
Four pairs of positional isomers of ureidopeptides, FmocNH‐CH(R1)‐φ(NH‐CO‐NH)‐CH(R2)‐OY and FmocNH‐CH(R2)‐φ(NH‐CO‐NH)‐CH(R1)‐OY (Fmoc = [(9‐fluorenyl methyl)oxy]carbonyl; R1 = H, alkyl; R2 = alkyl, H and Y = CH3/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to ? N? CH(R)? N? bond cleavage to form the characteristic N‐ and C‐terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N‐terminus form protonated (9H‐fluoren‐9‐yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N‐terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving an ion‐neutral complex and a direct loss of NH3 and CO2 is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N‐terminus eliminate CO2 followed by corresponding imine to form (9H‐fluoren‐9‐yl)methyl cation (C14H11+) from FmocNH = CHR+. In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M ? H]? ions of ureidopeptide acids undergo a McLafferty‐type rearrangement followed by the loss of CO2 to form an abundant [M ? H ? Fmoc + H]? which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Strong correlation was found between 13C NMR chemical shifts of dipolarophilic CH?CH carbons and regioselectivity in 1,3‐dipolar cycloadditions of new acridin‐9‐yl dipolarophiles with stable benzonitrile oxides (BNO). Accordingly, two starting dipolarophiles, (acridin‐9‐yl)‐CH?CH‐R (R = COOCH3 or Ph), reacted with three BNOs (2,4,6‐trimethoxy, 2,4,6‐trimethyl, and 2,6‐dichloro) to give a mixture of two target isoxazoline regioisomers in which the acridine was bound either to isoxazoline C‐4 carbon (4‐Acr) or C‐5 one (5‐Acr). Methyl 3‐(acridin‐9‐yl)propenoate afforded major 4‐(acridin‐9‐yl)‐isoxazoline‐5‐carboxylates (4‐Acr) and minor 5‐(acridin‐9‐yl)‐4‐carboxylates (5‐Acr). 9‐(2‐Styryl)acridine regiospecifically afforded only 4‐Acr cycloadducts. The ratios of regioisomers were compared with analogous reactions of acridin‐4‐yl dipolarophiles. Regioselectivity was dependent on a polarity of the CH?CH bond, donor effects in BNO, and stabilization by stacking of aromatic substituents in the products. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Reaction of bisalkylidyne cluster compounds [Fe3(CO)93‐CR)2] ( 1a—d ) ( a , R = H; b , R = F; c , R = Cl; d , R = Br) with the phosphaalkyne t‐C4H9‐C≡P ( 2 ) yield a single isomer of the phosphaferrole cluster [Fe3(CO)8][CR‐C(t‐Bu)‐P‐CR] ( 3a—d ). However, the three isomeric compounds [Fe3(CO)8][C(OEt)‐C(t‐Bu)‐P‐C(Me)] ( 5a ), [Fe3(CO)8][C(Me)‐C(t‐Bu)‐P‐C(OEt)] ( 5b ), and [Fe3(CO)8][C(OEt)‐C(Me)‐C(t‐Bu)‐P] ( 5c ) are obtained in the reaction of [Fe3(CO)93‐CMe)(μ3‐C‐OEt)] ( 4 ) with 2 . As the phosphaferroles 3 possess a lone pair of electrons at the phosphorus atom they can act as ligands. [Fe3(CO)8][CF‐C(t‐Bu)‐P‐CF]MLn ( 7a—c ) ( a , MLn = Cr(CO)5; b , MLn = CpMn(CO)2; c , MLn = Cp*Mn(CO)2) were formed from 3b and LnM(η2‐C8H14) ( 6a—c ). The dinuclear cluster [Fe2(CO)6][CF‐CF‐C(t‐Bu)‐PH(OMe)] ( 8 ) was obtained from 3b and NiCl2·6H2O in methanol. The structures of 3a—d , 5a—c , 7b , and 8 have been elucidated by X‐ray crystal structure determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号