首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diarylprolinol‐mediated asymmetric direct cross‐aldol reaction of α,β‐unsaturated aldehyde as an electrophilic aldehyde was developed. The reaction becomes accelerated by an acid when a carbonyl group is introduced at the γ‐position of the α,β‐unsaturated aldehyde. Synthetically useful γ,δ‐unsaturated β‐hydroxy aldehydes were obtained with high anti‐selectivity and excellent enantioselectivity.  相似文献   

2.
Based on the assumption that intramolecularly formed protic oxonium ylides could be trapped by electrophiles, transition‐metal‐catalyzed reactions of diazoesters bearing a primary hydroxy group with electron‐deficient aldehydes and isatins were examined. Good to high chemo‐ and diastereoselectivities were achieved with reactions catalyzed by Cu(hfacac)2. The reactions were assumed to occur via tandem intramolecular protic oxonium ylide formation and subsequent aldol‐type addition. They not only provided an efficient entry to 3‐substituted 1,4‐dioxan‐2‐one heterocycles with at least one quaternary carbon center but also provided experimental evidence for a stepwise pathway for the transition‐metal‐catalyzed intramolecular O? H insertion of diazo compounds.  相似文献   

3.
Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)‐H8‐BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α‐position of β‐ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β‐ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated.  相似文献   

4.
The first highly enantioselective iridium‐catalyzed allylic alkylation that provides access to products bearing an allylic all‐carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one‐pot preparation of α‐quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations.  相似文献   

5.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

6.
Copper‐catalyzed enantioselective allyl–allyl coupling between allylboronates and either Z‐acyclic or cyclic allylic phosphates using a new chiral N‐heterocyclic carbene ligand, bearing a phenolic hydroxy, is reported. This reaction occurs with exceptional SN2′‐type regioselectivities and high enantioselectivities to deliver chiral 1,5‐diene derivatives with a tertiary stereogenic center at the allylic/homoallylic position.  相似文献   

7.
In the presence of samarium-bismuth(Ⅲ) chloride,intermolecular aldol type reations of α-bromoacetophenone with various aldehydes in tetrahydrofuran-water mixed solvent afford β-hydroxy ketones in moderate to good yields under mild and neutral conditions.  相似文献   

8.
A direct aldol reaction of an α‐azido 7‐azaindolinylamide, promoted by a Cu‐based cooperative catalyst, is documented. Aromatic aldehydes bearing an ortho substituent exhibited diastereodivergency depending on the nature of the chiral ligands used. Smooth reactions with ynals highlighted the broad substrate scope. A vicinal azido alcohol unit in the product allowed direct access to the corresponding aziridine and facile hydrolysis of the 7‐azaindolinylamide moiety furnished enantioenriched β‐hydroxy‐α‐azido carboxylic acid derivatives.  相似文献   

9.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

10.
β‐Hydroxy‐α‐amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of β‐hydroxy‐α‐amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one‐flask protocol. Enolization of (R,R)‐ or (S,S)‐pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L ‐ or D ‐threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55–98 %, and are readily transformed into β‐hydroxy‐α‐amino acids by mild hydrolysis or into 2‐amino‐1,3‐diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.  相似文献   

11.
The trans‐o‐hydroxybenzylidene pyruvate aldolase‐catalysed reactions between fluoropyruvate and many (hetero)aromatic aldehydes yield aldol adducts without subsequent dehydration. Treatment of the reaction products with hydrogen peroxide yields the corresponding syn‐configured α‐fluoro β‐hydroxy carboxylic acids which have >98 % ee. The overall chemoenzymatic approach, in which fluoropyruvate serves as a fluoroacetate equivalent, may be exploited in the synthesis of polar building blocks and fragments with potential value in drug discovery.  相似文献   

12.
α,α‐Disubstituted α‐amino acids are central to biotechnological and biomedical chemical processes for their own sake and as substructures of biologically active molecules for diverse biomedical applications. Structurally, these compounds contain a quaternary stereocenter, which is particularly challenging for stereoselective synthesis. The pyridoxal‐5′‐phosphate (PLP)‐dependent L ‐serine hydroxymethyltransferase from Streptococcus thermophilus (SHMTSth; EC 2.1.2.1) was engineered to achieve the stereoselective synthesis of a broad structural variety of α,α‐dialkyl‐α‐amino acids. This was accomplished by the formation of quaternary stereocenters through aldol addition of the amino acids D ‐Ala and D ‐Ser to a wide acceptor scope catalyzed by the minimalist SHMTSth Y55T variant overcoming the limitation of the native enzyme for Gly. The SHMTSth Y55T variant tolerates aromatic and aliphatic aldehydes as well as hydroxy‐ and nitrogen‐containing aldehydes as acceptors.  相似文献   

13.
Methyl‐branched (Z)‐trisubstituted olefins are found in many polyketides with interesting biological activity, such as epothilone D ( 1 ), discodermolide ( 3 ), and peloruside A ( 2 ). Despite the employment of numerous different strategies, this motif has often been the weak point in total synthesis. Thus, we present a novel hydroxide‐ induced Grob‐type fragmentation as an easy access to trisubstituted olefins. In our case, β‐mesyloxy δ‐lactones with three stereogenic centers were chosen whose fragmentation underlies a high stereoelectronic control. Major challenges in the syntheses were the installation of quaternary stereocenters, achieved by enzymatic desymmetrization of meso‐diesters and by aluminium‐promoted stereoselective rearrangement of chiral epoxides, respectively. Different aldol strategies were developed for the formation of the fragmentation precursors. Additionally a short survey about nucleophilic additions to aldehydes with quaternary α‐centers is presented.  相似文献   

14.
A Cu‐catalyzed asymmetric detrifluoroacetylative aldol addition reaction of 2‐fluoro‐1,3‐diketones/hydrates to aldehydes in the presence of base and chiral bidentate ligand was developed. The reaction was carried out under convenient conditions and tolerated a wide range of substrates, resulting in fluorinated quaternary stereogenic α‐fluoro‐β‐hydroxy ketone products with good chemical yields, diastereo‐ and enantioselectivities. This catalytic asymmetric detrifluoroacetylative aldol addition reaction provides a new approach for the preparation of biologically relevant products containing C? F quaternary stereogenic centers.  相似文献   

15.
Disclosed herein is a new catalytic approach for an efficient access to cyclic β‐amino acids widely found in bioactive small molecules and peptidic foldamers. Our method involves addition of the remote γ‐carbon atoms of α,β‐unsaturated imines to enals by iminium organic catalysis. This highly chemo‐ and stereo‐selective reaction affords cyclic β‐amino aldehydes that can be converted to amino acids bearing quaternary stereocenters with exceptional optical purities. Our study demonstrates the unique power of organic catalytic remote carbon reactions in rapid synthesis of functional molecules.  相似文献   

16.
A highly enantioselective method (up to 98 % ee) for the preparation of β‐amino alcohols was achieved by using the readily available proline‐tetrazole as the catalyst for the N‐nitroso aldol reaction of aldehydes with in situ generated nitrosocarbonyl compounds. The key to success of this reaction is the use of MnO2 as an oxidant and catechol as a Brønsted acid additive.  相似文献   

17.
An aldehyde‐selective Wacker‐type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β‐fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation.  相似文献   

18.
Copper‐catalyzed enantioselective allylic alkylation of azoles with γ,γ‐disubstituted primary allylic phosphates was achieved using a new chiral N‐heterocyclic carbene ligand bearing a naphtholic hydroxy group. This reaction occurred with excellent branch regioselectivity and high enantioselectivity, thus forming a controlled all‐carbon quaternary stereogenic center at the position α to the heteroaromatic ring.  相似文献   

19.
An enantioselective sulfenylation/semipinacol rearrangement of 1,1‐disubstituted and trisubstituted allylic alcohols was accomplished with a chiral Lewis base and a chiral Brønsted acid as cocatalysts, generating various β‐arylthio ketones bearing an all‐carbon quaternary center in moderate to excellent yields and excellent enantioselectivities. These chiral arylthio ketone products are common intermediates with many applications, for example, in the design of new chiral catalysts/ligands and the total synthesis of natural products. Computational studies (DFT calculations) were carried out to explain the enantioselectivity and the role of the chiral Brønsted acid. Additionally, the synthetic utility of this method was exemplified by an enantioselective total synthesis of (?)‐herbertene and a one‐pot synthesis of a chiral sulfoxide and sulfone.  相似文献   

20.
Palladium‐catalyzed regio‐, diastereo‐, and enantioselective allylic alkylation of β‐ketocarbonyls with Morita–Baylis–Hillman adducts has been developed using a spiroketal‐based diphosphine (SKP) as the ligand, thus affording a range of densely functionalized products bearing vicinal tertiary and all‐carbon quaternary stereodyad in high selectivities. The utility of the protocol was demonstrated by the facile synthesis of some complex molecules by simple product transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号