首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We report uranium(IV)‐carbene‐imido‐amide metalla‐allene complexes [U(BIPMTMS)(NCPh3)(NHCPh3)(M)] (BIPMTMS=C(PPh2NSiMe3)2; M=Li or K) that can be described as R2C=U=NR′ push–pull metalla‐allene units, as organometallic counterparts of the well‐known push–pull organic allenes. The solid‐state structures reveal that the R2C=U=NR′ units adopt highly unusual cis‐arrangements, which are also reproduced by gas‐phase theoretical studies conducted without the alkali metals to remove their potential structure‐directing roles. Computational studies confirm the double‐bond nature of the U=NR′ and U=CR2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali‐metal‐free anion. Combined experimental and theoretical data show that the push–pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=UIV=N units.  相似文献   

2.
A porphyrin π‐system has been modulated by enhancing the push–pull character with highly asymmetrical substitution for dye‐sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron‐donating group and one carboxyphenylethynyl moiety as a strong electron‐withdrawing, anchoring group were introduced into the meso‐positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light‐harvesting property as well as high electron distribution in the anchoring group of LUMO, a push–pull‐enhanced, porphyrin‐sensitized solar cell exhibited more than 10 % power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)‐sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push–pull substitution will open the possibilities of further improving cell performance in organic solar cells.  相似文献   

3.
The theoretical calculations are used to find that D–π–A–π–A style conjugated polymer PC‐TBTBT is more efficient for solar cells application than the D–π–A analog PC‐TBT because the D–π–A–π–A structure has a narrower band gap and higher molar absorption coefficient and redshift spectrum. Motivated by the theoretical prediction, 5,6‐bis(octyloxy)‐2,1,3‐benzothiadiazole and 2,7‐carbazole are adopted to synthesize the D–π–A–π–A style PC‐TBTBT (Mw = 31.1 kDa) and D–π–A analog PC‐TBT (Mw = 87.5 kDa) by Suzuki coupling reaction. Experimental results confirm that D–π–A–π–A PC‐TBTBT ‐based solar cell shows a power conversion efficiency (PCE) of 4.74% with high VOC of 0.99 V and enhanced JSC of 9.70 mA cm−2. The PCE and JSC achieve improvements of 17% and 26%, respectively, compared to the D–π–A PC‐TBT ‐based solar cell.

  相似文献   


4.
Nucleophilic attack of (triphenylphosphonio)cyclopentadienide on the dichlorodiazomethane–tungsten complex trans‐[BrW(dppe)2(N2CCl2)]PF6 [dppe is 1,2‐bis(diphenylphosphino)ethane] results in C—C bond formation and affords the title compound, trans‐[W(C24H18ClN2P)Br(C26H24P2)2]PF6·0.6CH2Cl2. This complex, bis[1,2‐bis(diphenylphosphino)ethane]bromido{chloro[3‐(triphenylphosphonio)cyclopentadienylidene]diazomethanediido}tungsten hexafluorophosphate dichloromethane 0.6‐solvate, contains the previously unknown ligand chloro[3‐(triphenylphosphonio)cyclopentadienylidene]diazomethane. Evidence from bond lengths and torsion angles indicates significant through‐ligand delocalization of electron density from tungsten to the nominally cationic phosphorus(V) centre. This structural analysis clearly demonstrates that the tungsten–dinitrogen unit is a powerful π‐electron donor with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential applications as nonlinear optical materials and molecular semiconductors.  相似文献   

5.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

7.
The conformational energy landscape and the associated electronic structure and spectroscopic properties (UV/Vis/near‐infrared (NIR) and IR) of three formally d5/d6 mixed‐valence diruthenium complex cations, [{Ru(dppe)Cp*}2(μ‐C≡CC6H4C≡C)]+, [ 1 ]+, [trans‐{RuCl(dppe)2}2(μ‐C≡CC6H4C≡C)]+, [ 2 ]+, and the Creutz–Taube ion, [{Ru(NH3)5}2(μ‐pz)]5+, [ 3 ]5+ (Cp=cyclopentadienyl; dppe=1,2‐bis(diphenylphosphino)ethane; pz=pyrazine), have been studied using a nonstandard hybrid density functional BLYP35 with 35 % exact exchange and continuum solvent models. For the closely related monocations [ 1 ]+ and [ 2 ]+, the calculations indicated that the lowest‐energy conformers exhibited delocalized electronic structures (or class III mixed‐valence character). However, these minima alone explained neither the presence of shoulder(s) in the NIR absorption envelope nor the presence of features in the observed vibrational spectra characteristic of both delocalized and valence‐trapped electronic structures. A series of computational models have been used to demonstrate that the mutual conformation of the metal fragments—and even more importantly the orientation of the bridging ligand relative to those metal centers—influences the electronic coupling sufficiently to afford valence‐trapped conformations, which are of sufficiently low energy to be thermally populated. Areas in the conformational phase space with variable degrees of symmetry breaking of structures and spin‐density distributions are shown to be responsible for the characteristic spectroscopic features of these two complexes. The Creutz–Taube ion [ 3 ]5+ also exhibits low‐lying valence‐trapped conformational areas, but the electronic transitions that characterize these conformations with valence‐localized electronic structures have low intensities and do not influence the observed spectroscopic characteristics to any notable extent.  相似文献   

8.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au2(mes)2(μ‐LL)] (LL=dppe: 1,2‐bis(diphenylphosphano)ethane 1 a , and water‐soluble dppy: 1,2‐bis(di‐3‐pyridylphosphano)ethane 1 b ) with Ag+ and Cu+ lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au2M(μ‐mes)2(μ‐LL)][A] (M=Ag, A=ClO4?, LL=dppe 2 a , dppy 2 b ; M=Ag, A=SO3CF3?, LL=dppe 3 a , dppy 3 b ; M=Cu, A=PF6?, LL=dppe 4 a , dppy 4 b ). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au2(mes)2(μ‐dppy)] ( 1 b ) and [Au2Ag(μ‐mes)2(μ‐dppe)][SO3CF3] ( 3 a ) were determined by a single‐crystal X‐ray diffraction study. 3 a in solid state is not a cyclic trinuclear Au2Ag derivative but it gives an open polymeric structure instead, with the {Au2(μ‐dppe)} fragments “linked” by {Ag(μ‐mes)2} units. The very short distances of 2.7559(6) Å (Au? Ag) and 2.9229(8) Å (Au? Au) are indicative of gold–silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self‐aggregation of [Au2M(μ‐mes)2(μ‐LL)]+ units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au? Au and/or Au? M metallophilic interactions, as that observed for 3 a . In solid state the heterometallic Au2M complexes with dppe ( 2 a – 4 a ) show a shift of emission maxima (from ca. 430 to the range of 520‐540 nm) as compared to the parent dinuclear organometallic product 1 a while the complexes with dppy ( 2 b–4 b ) display a more moderate shift (505 for 1 b to a max of 563 nm for 4 b ). More importantly, compound [Au2Ag(μ‐mes)2(μ‐dppy)]ClO4 ( 2 b ) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au2Cl2(μ‐LL)] (LL dppy 5 b ) was also studied for comparative purposes. The antimicrobial activity of 1–5 and Ag[A] (A=ClO4?, SO3CF3?) against Gram‐positive and Gram‐negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe ( 2 a – 4 a ) were the more active (minimum inhibitory concentration 10 to 1 μg mL?1). Compounds containing silver were ten times more active to Gram‐negative bacteria than the parent dinuclear compound 1 a or silver salts. Au2Ag compounds with dppy ( 2 b , 3 b ) were also potent against fungi.  相似文献   

9.
Four conjugated push–pull organometallic polymers ( [Pt]‐AQ )n ( [Pt] = trans‐bis(phenylacetylene)bis(tributylphosphine)platinum(II); AQ = 2‐bromo‐, 2,6‐dibromo‐, 2,6‐diamino‐, and unsubstituted anthraquinone diimine) were prepared and characterized by UV–vis spectroscopy and electrochemistry. A low‐energy charge transfer, CT, band ( [Pt] *→ AQ ; confirmed by density functional theory calculations), was found in the 445–500 nm window rather than the expected red‐shifted range above 630 nm. X‐ray structures of four model compounds reveal that steric hindrance induces large dihedral angles between the C6H4 and NCC2 planes, rendering π‐orbital overlap difficult between the [Pt] and AQ units. The position of the CT band is mainly driven the reduction potential of the anthraquinone diimine unit.  相似文献   

10.
The synthesis of a novel family of cyclic push–pull carbenes, namely, azavinylidene phosphoranes, is described. The methodology is based on a formal [3+2] cycloaddition between terminal alkynes and phosphine–imines followed by an oxidation/deprotonation step. Carbenes 6 , obtained by simple deprotonation, exhibit typical transient carbene reactivity like the intramolecular C?H insertion reaction and a pronounced ambiphilic character exemplified by [2+1] cycloaddition with electron‐poor methyl acrylate. Owing to the cyclic structure, carbenes 6 also exhibit an excellent coordination ability toward transition metals. RhI complex 10 was obtained in excellent yield and was fully characterized by multinuclear NMR spectroscopy and X‐ray crystallography. The corresponding RhI–carbonyl complex was also prepared; this indicates that carbenes 6 belong to the strongest σ‐donating ligands to date. DFT calculations confirmed the high σ‐donation ability of 6 and their classification as push–pull carbenes with a relatively small singlet–triplet energy gap of 23.2–24.3 kcal mol?1.  相似文献   

11.
A new balanced donor–acceptor molecule, namely, benzodithiophene (BDT)‐rhodanine‐[6,6]‐phenyl‐C71 butyric acid methyl ester (Rh‐PC71BM) comprising two covalently linked blocks, a p‐type oligothiophene‐containing BDT‐based moiety and an n‐type PC71BM unit was designed and synthesized. The single‐component organic solar cell (SCOSC) fabricated from Rh‐PC71BM molecules showed a power conversion efficiency (PCE) of 3.22 % with an open‐circuit voltage (Voc) of 0.98 V. These results rank are among the highest values for SCOSCs based on a monomolecular material. In particular, the one‐molecule Rh‐PC71BM device exhibits excellent thermal stability compared to reference Rh‐OH:PC71BM device. The success of our monomolecular strategy can provide a new way to develop high‐performance SCOSCs.  相似文献   

12.
The first general sulfone–metal exchange is described. Treating substituted 2‐pyridylsulfonylacetonitriles with either BuLi or Bu3MgLi generates metalated nitriles that efficiently intercept a variety of electrophiles to afford quaternary nitriles. The 2‐pyridylsulfone is critical for the sulfone–metal exchange because chelation anchors the organometallic proximal to the electrophilic, tetrasubstituted sulfone to override complex‐induced deprotonation. Alkylating commercial 2‐pyridinesulfonylacetonitrile with mild bases, either K2CO3 or DBU, and subsequent sulfone–metal exchange and alkylation rapidly assembles quaternary nitriles by three alkylations, only one of which requires an organometallic reagent.  相似文献   

13.
The ring‐fused thiophene derivatives benzo[c]thiophene and its precursor bicyclo[2.2.2]octadiene (BCOD) have been introduced as π‐conjugated spacers for organic push–pull sensitizers with dihexyloxy‐substituted triphenylamine as donor and cyanoacrylic acid as acceptor ( OL1 , OL2 , OL3 , OL4 , OL5 , OL6 ). The effects of the fused ring on the spectroscopic and electrochemical properties of these sensitizers and their photovoltaic performance in dye‐sensitized solar cells have been evaluated. Introduction of a binary benzo[c]thiophene and ethylenedioxy thiophene as π bridge caused a significant red shift of the characteristic intramolecular charge‐transfer band to 642 nm. It is found that the sensitizer OL3 , which contains one benzo[c]thiophene unit as π linker, gives the highest overall conversion efficiency of 5.03 % among all these dyes.  相似文献   

14.
We report the synthesis of heterobimetallic Ta–Rh and Ta–Ir complexes bridged by a 2,5‐di‐tert‐butyltantalacyclopentadiene fragment. A mononuclear 2,5‐di‐tert‐butyltantalacyclopentadiene complex 2 was prepared by the reaction of (η2‐Me3SiC≡CSiMe3)TaCl3(dme) ( 1 ) with excess amounts of 3,3‐dimethylbut‐1‐yne in the presence of AlCl3. The tantalacyclopentadiene moiety of complex 2 served as a η4‐diene unit for coordinating the Rh and Ir centers; treatment of 2 with [M(μ‐Cl)(cod)]2 (M = Rh and Ir; cod = cycloocta‐1,5‐diene) in toluene gave TaRh(μ‐C4H2tBu2)Cl4(cod) ( 3 ) and [TaIr(μ‐C4H2tBu2)Cl4]2 ( 5 ), respectively. The X‐Ray diffraction study of 3 revealed a dative bond from an electron‐rich Rh toward an electron‐deficient Ta. Upon dissolving 3 in THF, [(thf)TaRh(μ‐C4H2tBu2)Cl3]2(μ‐Cl)2 ( 4 ) was isolated together with free cycloocta‐1,5‐diene. When complex 5 was treated with 1,2‐bis‐(diphenylphosphino)ethane (dppe), a monomeric Ta–Ir complex, TaIr(μ‐C4H2tBu2)Cl4(dppe) ( 6 ), was isolated. Ta–Rh and Ta–Ir heterobimetallic complexes 3 and 6 were reduced by a two‐electron process upon reaction with 2,3,5,6‐tetramethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7a : Si‐Me4‐DHP) or 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7b : Si‐Me2‐DHP) to afford the corresponding complexes TaM(μ‐C4H2tBu2)Cl2(L) ( 8 : M = Rh, L = cod; 9 : M = Ir, L = dppe), where the metallacycle moiety was assigned to have a tantalacyclopentadiene fragment with a large contribution of a tantalacyclopentatriene canonical form.  相似文献   

15.
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution‐processed solar cells containing A–π–D–π–A‐type small molecules and fullerenes have reached 11%. However, the method for designing high‐performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A–π–D–π–A electron‐donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained.  相似文献   

16.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

17.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

18.
We synthesized a novel low‐band‐gap, conjugated polymer, poly[4,7‐bis(3′,3′‐diheptyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole] [poly(heptyl4‐PTBT)], consisting of alternating electron‐rich, diheptyl‐substituted propylene dioxythiophene and electron‐deficient 2,1,3‐benzothiadiazole units, and its photovoltaic properties were investigated. A thin film of poly(heptyl4‐PTBT) exhibited an optical band gap of 1.55 eV. A bulk‐heterojunction solar cell with indium tin oxide/poly(3,4‐ethylenedioxythiophene)/poly(heptyl4‐PTBT): methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) (1:4)/LiF/Al was fabricated with poly(heptyl4‐PTBT) as an electron donor and PCBM as an electron acceptor and showed an open‐circuit voltage, short‐circuit current density, and power conversion efficiency of 0.37 V, 3.15 mA/cm2, and 0.35% under air mass 1.5 (AM1.5G) illumination (100 mW/cm2), respectively. A solid‐state, dye‐sensitized solar cell with a SnO2:F/TiO2/N3 dye/poly(heptyl4‐PTBT)/Pt device was fabricated with poly(heptyl4‐PTBT) as a hole‐transport material. This device exhibited a high power conversion efficiency of 3.1%, which is the highest power conversion efficiency value with hole‐transport materials in dye‐sensitized solar cells to date. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1394–1402, 2007  相似文献   

19.
Novel copolymers consisting of the alternating push–pull comonomers fluorene and thieno[3,4‐b]pyrazine/quinoxaline were synthesized by a palladium‐catalyzed Suzuki cross‐coupling reaction in 60–80% yields. The structure of the deeply colored copolymers was confirmed with 1H and 13C NMR. All the new materials were characterized with spectroscopic and electrochemical methods. Bulk heterojunction organic solar cells based on some of the novel polymers in combination with the well‐known fullerene acceptor [6,6]‐phenyl C61–butyric acid methyl ester were fabricated, and their photovoltaic parameters were measured. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6952–6961, 2006  相似文献   

20.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) induces N–Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c′/z? fragment pair. Subsequently, the z? generates z′ and [z + matrix] fragments via further radical reactions because of the low stability of the z?. In the present study, we investigated MALDI‐ISD of a cyclic peptide. The N–Cα bond cleavage in the cyclic peptide by MALDI‐ISD produced the hydrogen‐abundant peptide radical [M + 2H]+? with a radical site on the α‐carbon atom, which then reacted with the matrix to give [M + 3H]+ and [M + H + matrix]+. For 1,5‐diaminonaphthalene (1,5‐DAN) adducts with z fragments, post‐source decay of [M + H + 1,5‐DAN]+ generated from the cyclic peptide showed predominant loss of an amino acid with 1,5‐DAN. Additionally, MALDI‐ISD with Fourier transform‐ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H]+ and [M + H]+ with two 13C atoms. These results strongly suggested that [M + 3H]+ and [M + H + 1,5‐DAN]+ were formed by N–Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N–Cα bond during MALDI‐ISD could be estimated by the ratio of the intensity of [M + H]+ and [M + 3H]+ in the Fourier transform‐ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg‐Gly‐Asp‐D‐Phe‐Val) was correlated to its tendency to cleave the N–Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N–Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号