首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Luminescence downshifting (LDS) of light can be a practical photon management technique to compensate the narrow absorption band of high‐extinction‐coefficient dyes in dye‐sensitized solar cells (DSSCs). Herein, an optical analysis on the loss mechanisms in a reflective LDS (R‐LDS)/DSSC configuration is reported. For squaraine dye (550–700 nm absorption band) and CaAlSiN3:Eu2+ LDS material (550–700 nm emission band), the major loss channels are found to be non‐unity luminescence quantum efficiency (QE) and electrolyte absorption. By using an ideal LDS layer (QE=100 %), a less absorbing electrolyte (Co‐based), and antireflection coatings, approximately 20 % better light harvesting is obtained. If the absorption/emission band of dye/LDS is shifted to 800 nm, a maximal short‐circuit current density (Jsc) of 22.1 mA cm?2 can be achieved. By putting the LDS layer in front of the DSSC (transmissive mode), more significant loss channels are observed, and hence a lower overall efficiency than the R‐LDS configuration.  相似文献   

2.
A new scheme of photo‐fluorescent emission origin, described as S0 (relaxed state)→Sn (Frank‐Condon state)→ Sm (relaxed state)→S0 (Frank‐Condon state), is presented to explain the multiple fluorescent emissions of squaraine dyes observed experimentally according to the configuration interaction singles calculations of relaxed excited states of a model compound, bis[4‐(N,N‐dimethylamino)phenyl]squaraine (SQ). It is exhibited that all triple fluorescent emissions of SQ have their significant origin in vertical electron transitions of different relaxed excited states. In addition, some important absorption peaks appearing in higher energy region are most likely to be responsible for the higher energy band observed in solid states of many squaraine dyes.  相似文献   

3.
To test the molecular exciton theory for heterodimeric chromophores, various heterodimers and clusters, in which two different dyes were stacked alternately, were prepared by hybridizing two oligodeoxyribonucleotides (ODNs), each of which tethered a different dye on D ‐threoninol at the center of the strand. NMR analyses revealed that two different dyes from each strand were stacked antiparallel to each other in the duplex, and were located adjacent to the 5′‐side of a natural nucleobase. The spectroscopic behavior of these heterodimers was systematically examined as a function of the difference in the wavelength of the dye absorption maxima (Δλmax). We found that the absorption spectrum of the heterodimer was significantly different from that of the simple sum of each monomeric dye in the single strand. When azobenzene and Methyl Red, which have λmax at 336 and 480 nm, respectively, in the single strand (Δλmax=144 nm), were assembled on ODNs, the band derived from azobenzene exhibited a small hyperchromism, whereas the band from Methyl Red showed hypochromism and both bands shifted to a longer wavelength (bathochromism). These hyper‐ and hypochromisms were further enhanced in a heterodimer derived from 4′‐methylthioazobenzene and Methyl Red, which had a much smaller Δλmax (82 nm; λmax=398 and 480 nm in the single‐strand, respectively). With a combination of 4′‐dimethylamino‐2‐nitroazobenzene and Methyl Red, which had an even smaller Δλmax (33 nm), a single sharp absorption band that was apparently different from the sum of the single‐stranded spectra was observed. These changes in the intensity of the absorption band could be explained by the molecular exciton theory, which has been mainly applied to the spectral behavior of H‐ and/or J‐aggregates composed of homo dyes. However, the bathochromic band shifts observed at shorter wavelengths did not agree with the hypsochromism predicted by the theory. Thus, these data experimentally verify the molecular exciton theory of heterodimerization. This coherent coupling among the heterodimers could also partly explain the bathochromicity and hypochromicity that were observed when the dyes were intercalated into the duplex.  相似文献   

4.
A broad series of more than 20 acceptor‐substituted squaraines was synthesized that feature different acceptor functionalities at the central squaraine four‐membered ring. The influence of these acceptor units on the reactivity of semisquaraine precursors and stability of the respective squaraines were explored. Thereby the dicyanovinyl group was found to be the most versatile acceptor group that enabled various modifications at the donor moiety of the squaraine scaffold, leading to an extended series of dicyanovinyl‐functionalized squaraines. The variation of donor units afforded a set of NIR fluorophores that cover a wavelength region from the visible at about 650 nm far into the NIR up to 920 nm with fluorescence quantum yields between 0.93 and 0.11 and outstanding optical brightness. This excellent optical property is related to a rigid molecular scaffold that is fixed in an all‐cis configuration by the additional dicyanovinyl acceptor unit. The change of the molecular symmetry from C2h to C2v upon functionalization of the squaraine core with dicyanovinyl acceptor group has been confirmed in solution by electro‐optical absorption (EOA) spectroscopy, revealing permanent ground‐state dipole moments μg in the range between 4.3 and 6.4 D. These dipole moments direct an antiparallel packing of the molecules in the solid state according to single‐crystal X‐ray analyses achieved for four dicyanovinyl‐functionalized squaraines. The structural properties, the EOA results, as well as the band shapes of the optical spectra indicate that these polymethine dyes are cyanine‐type chromophores. It is worth noting that the orientation of the dipole moment vectors is orthogonal to the orientation of the transition dipole moment vectors, which is an uncommon but characteristic feature of this rather novel class of polymethine dyes. With regard to applications of these dyes in organic solar cells, their redox properties were also studied by cyclic voltammetry.  相似文献   

5.
A series of novel aza-BODIPY dyes substituted with p-(dimethylamino)phenyl groups were synthesized and their spectral and electrochemical properties were compared. In particular, the impact of p-(Me2N)Ph- groups on these characteristics was of consideration. For two aza-BODIPYs studied, a near-IR absorption band was observed at circa λabs=796 nm. Due to the pronounced intramolecular charge transfer (ICT) exerted by the presence of strongly electron-donating p-(Me2N)Ph- substituents, the compounds studied were weakly emissive with the singlet lifetimes (τS) in the picosecond range. Nanosecond laser photolysis experiments of the brominated aza-BODIPYs revealed T1→Tn absorption spanning from ca. 350 nm to ca. 550 nm with the triplet lifetimes (τT) ranged between 6.0 μs and 8.5 μs. The optical properties of the aza-BODIPYs studied were pH-sensitive. Upon protonation of the dimethylamino groups with trifluoroacetic acid in toluene, a stepwise disappearance of the NIR absorption band at λabs=790 nm was observed with the concomitant appearance of a blue-shifted absorption band at λabs=652 nm, which was accompanied by a prominent emission band at λfl=680 nm. The transformation from a non-emissive to an emissive compound is associated with the inhibition of the ICT. As estimated by CV/DPV measurements, all aza-BODIPYs studied exhibited two irreversible oxidation and two quasi-reversible reduction processes. All compounds studied exhibit extremely high photostability and thermal stability.  相似文献   

6.
The enhancement of the light absorption ability of synthetic chlorophyll derivatives is demonstrated. Chlorophyll derivatives directly conjugated with a difluoroboron 1,3‐diketonate group at the C3 position were synthesized from methyl pyropheophorbide‐d through Barbier acylmethylation of the C3‐formyl moiety, oxidation of the C3‐carbinol, and difluoroboron complexation of the diketonate. Electronic absorption spectra in a diluted solution showed that the synthetic conjugates gave an absorption band at λ=400–500 nm, with a Qy band shifted to a longer wavelength of λ≈700 nm. DFT calculations demonstrated that the absorption bands and redshifts were ascribable to the coupling of the LUMO of chlorin with that of the difluoroboron diketonate moiety. The introduction of a pyrenyl group at the C33‐position of the conjugate afforded an additional charge‐transfer band over λ=500 nm, producing a pigment that bridged the green gap in standard chlorophylls.  相似文献   

7.
Five new materials based on pyrazole derivatives have been synthesized and characterized as organic light‐emitting devices. This report presents a novel approach to combine pyrazole with aromatic hydrocarbons via methylene. The formed molecules exhibited twisted structures, which resulted in high glass transition temperatures (Tg), which ranged from 83.0 to 101.1°C. They also had high optical band gaps (Eg); most of their optical band gaps are determined by the absorption edge technique as 3.43 to 3.66 eV, evaluated photophysical properties of these synthesized novel chromophores, the optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm?1·M?1), Stokes' shifts (ΔλST; nm), and quantum yields (φF). These compounds exhibited intense absorption bonds between 230 and 350 nm, and the effect of solvent polarity on emission of these pyrazole derivatives was also studied. In addition, they showed blue fluorescence in different solvents and bathochromic shift with the increase in the solvent polarity.  相似文献   

8.
A novel cationic IrIII complex [Ir(Bpq)2(CzbpyCz)]PF6 (Bpq=2‐[4‐(dimesitylboryl)phenyl]quinoline, CzbpyCz = 5,5′‐bis(9‐hexyl‐9H‐carbazol‐3‐yl)‐2,2′‐bipyridine) containing both triarylboron and carbazole moieties was synthesized. The excited‐state properties of [Ir(Bpq)2(CzbpyCz)]PF6 were investigated through UV/Vis absorption and photoluminescence spectroscopy and molecular‐orbital calculations. This complex displayed highly efficient orange‐red phosphorescent emission with an emission peak of 583 nm and quantum efficiency of Φ=0.30 in dichloromethane at room temperature. The binding of fluoride ions to [Ir(Bpq)2(CzbpyCz)]PF6 can quench the phosphorescent emission from the IrIII complex and enhance the fluorescent emission from the N^N ligand, which corresponds to a visual change in the emission from orange‐red to blue. Thus, both colorimetric and ratiometric fluoride sensing can be realized. Interestingly, an unusual intense absorption band in the visible region was observed. And the detection of F? ions can also be carried out with visible light as the excitation wavelength. More importantly, the linear response of the probe absorbance change at λ=351 nm versus the concentration of F? ions allows efficient and accurate quantification of F? ions in the range 0–50 μM .  相似文献   

9.
The synthesis, structure, optical and redox properties, and electronic structure of tetrakis(pentafluorophenyl)tetrathiaisophlorin dioxide ( 12 ) are reported. Oxidation of tetrakis(pentafluorophenyl)tetrathiaisophlorin ( 11 ) with dimethyldioxirane afforded the oxidized product, which was the tetrathiaisophlorin with two thiophene 1‐oxide moieties ( 12 ). More significant nonplanarity and greater bond length alternation in 12 than those of 11 were observed by X‐ray structural analysis. The absorption spectrum of 12 contains two bands at λ=348 and 276 nm, with a weak tail that extends to λ≈650 nm. Analysis of the magnetic circular dichroism spectrum of 12 , based on Michl's 4N‐perimeter model and molecular orbital calculations, indicate that the broad band at λ=348 nm appears to contain N2 and P2 bands, and 12 is classified as a 4nπ system, similar to 11 . The nuclear‐independent chemical shift values and 1H NMR spectroscopy data indicate that 12 has more antiaromatic character than 11 .  相似文献   

10.
An intense single‐band blue emission at λ=450 nm is observed from Tm3+ ions through Ce3+ sensitization, for the first time, in colloidal Ce3+/Tm3+‐doped NaYF4 nanocrystals. The intense Tm3+ emission through broad‐band excitation is advantageous for developing luminescent nanocomposites because they can be easily incorporated into polymers. The composites can easily be coated over UV light‐emitting diodes (LEDs) to develop phosphor‐based blue LEDs.  相似文献   

11.
Luminophoric dialdehyde 1,4‐bis[4‐formylphenylethynyl‐(2,5‐dioctadecyloxyphenyl)‐buta‐1,3‐diyne] ( 4 ) enables the synthesis of diyne‐containing hybrid polyphenyleneethynylene/poly(p‐phenylenevinylene) polymer poly[1,4‐phenylene‐ethynylene‐1,4‐(2,5‐dioctadecyloxy)phenylene‐butadi‐1,3‐ynylene‐1,4‐(2,5‐dioctadecyloxy)phenylene‐ethynylene‐1,4‐phenylene‐ethene‐1,2‐diyl‐1,4‐(2,5‐dioctadecyloxy)phenylene‐ethene‐1,2‐diyl] ( 7 ) with a well‐defined general structure (? Ph? C?C? Ar? C?C? C?C? Ar? C?C? Ph? CH?CH? Ar? CH?CH? )n, which was confirmed by NMR and infrared spectroscopy. The highly luminescent material is thermostable, soluble in usual organic solvents through the grafting of octadecyloxy side groups, and can be processed into transparent films. With the aim to investigate the effect of ? C?C? C?C? in the photophysical behavior of 7 , a comparison of the photophysics of monomers 3 [1,4‐bis(4‐formylphenylethynyl)‐2,5‐dioctadecyloxybenzene] and 4 and subsequently of their respective polymers 6 and 7 has been carried out. Similar photophysical behaviors for 6 (poly[1,4‐phenylenethynylene‐1,4‐(2,5‐dioctadecyloxyphenylene)ethene‐1,2‐diyl]) and 7 were observed in dilute CHCl3 solution as a result of an identical chromophore system responsible for the absorption (λa = 448 nm) and emission (λf = 490 nm) in both compounds. The increased planarization and enhanced rigidity of the conjugated backbone in the solid state at room temperature as well as in frozen dilute tetrahydrofuran solution at 77 K cause the bathochromic shift of the absorption and emission spectra. The large octadecyloxy side chains obviously limit strong π‐π interchain interactions in the solid films, which explains the high fluorescence quantum yields of 35 and 52% obtained for 6 and 7 , respectively. The energetically arduous migration of the π electron through the diyne units not only requires a higher threshold voltage for the detection of photoconductivity in 7 but could possibly limit radiationless deactivation channels of the exciton, which explains the approximate 20% fluorescence quantum yields difference between 6 and 7 in the solid state. The electron‐withdrawing effect of the triple bonds confer both 6 and 7 with a good electron‐accepting property (Eox = 1.39 V vs Ag/AgCl) if used in light‐emitting diode devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2670–2679, 2002  相似文献   

12.
We report the synthesis and characterization of a three‐dimensional tetraphenylethene‐based octacationic cage that shows host–guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water‐soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH???π, π–π, and/or electrostatic interactions. The cage?coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a “hamburger”‐type host–guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host–guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF=28.5 %), larger excitation–emission gap (Δλex‐em=211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF=10.5 %; Δλex‐em=11 nm; τ=4.9 ns), and purer emission (ΔλFWHM=38 nm) as compared to the host (ΔλFWHM=111 nm).  相似文献   

13.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

14.
Eight coumarins, which carry a terminal alkene tethered by a CH2XCH2 group to their 4‐position (X=CH2, CMe2, O, S, NBoc, NZ, NTs, NBn), were synthesized in overall yields of 51–80 %. Starting materials for the syntheses were either commercially available 4‐hydroxycoumarin or 4‐formylcoumarin. The intramolecular [2+2] photocycloaddition of these coumarins gave diastereoselectively products with a tetracyclic 3,3a,4,4a‐tetrahydro‐1H‐cyclopenta[2,3]cyclobuta[1,2‐c]chromen‐5(2H)‐one skeleton. Direct irradiation at λ=300 nm in dichloromethane (c=10 mM ) led to product formation in good yields for most substrates, presumably via a singlet excited state intermediate. Due to the low coumarin absorption at λ >350 nm the photocycloaddition was slow upon irradiation at λ=366 nm. Addition of a chiral oxazaborolidine‐based Lewis acid (50 mol %) increased the reaction rate at λ=366 nm and induced a significant enantioselectivity in the [2+2] photocycloaddition. Six out of eight coumarin substrates (X=CH2, CMe2, O, NBoc, NZ, NTs) gave the respective products in yields of 72–96 % and with 74–90 % enantiomeric excess (ee) upon irradiation in dichloromethane (c=20 mM ) at ?75 °C. The Lewis acid presumably acts by coordination to the coumarin carbonyl oxygen atom, which leads to a bathochromic shift (redshift) of the UV absorption and which increases the singlet state lifetime. A second electrostatic interaction of the hydrogen atom at C3 with the oxygen atom of the oxazaborolidine is likely.  相似文献   

15.
2‐(2‐Amino‐3,4,5,6‐tetrafluorophenyl)benzoxazole ( 2 ) absorbs in long wavelength band (λabsmax = 346 nm in methanol) and in the normal wavelength band (λabsmax = 285.5 nm), and emits blue fluorescence. The emission intensity is highly affected by the solvent polarity and is large in a polar solvent such as methanol. 2‐(2‐Pentafluorobenzamido‐3,4,5,6‐ tetrafluorophenyl)benzoxazole ( 5 ) emits green fluorescence along with the short wavelength emission around 380 nm and their relative intensity depends on the solvent polarity. Green fluorescence is enhanced in nonpolar solvents such as chloroform and toluene, resulting in the considerably large Stokes shift.  相似文献   

16.
Establishing an effective design principle in solid‐state materials for a blue‐light‐excited Eu2+‐doped red‐emitting oxide‐based phosphors remains one of the significant challenges for white light‐emitting diodes (WLEDs). Selective occupation of Eu2+ in inorganic polyhedra with small coordination numbers results in broad‐band red emission as a result of enhanced crystal‐field splitting of 5d levels. Rb3YSi2O7:Eu exhibits a broad emission band at λmax=622 nm under 450 nm excitation, and structural analysis and DFT calculations support the concept that Eu2+ ions preferably occupy RbO6 and YO6 polyhedra and show the characteristic red emission band of Eu2+. The excellent thermal quenching resistance, high color‐rendering index Ra (93), and low CCT (4013 K) of the WLEDs clearly demonstrate that site engineering of rare‐earth phosphors is an effective strategy to target tailored optical performance.  相似文献   

17.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

18.
The large redshift of near‐infrared (NIR) absorptions of nitro‐substituted anthraquinone imide (Nitro‐AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO–LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron‐withdrawing dicyanovinyl (di‐CN) substituent was designed and prepared. The resulting molecule, di‐CN‐AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700–1000 (λmax≈860 nm) and λ=1100–1800 nm (λmax≈1400 nm) upon one‐electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple–red. The relationship between calculated radical anionic HOMO–LUMO gaps and the electron‐withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design.  相似文献   

19.
Reaction of 1,2‐di(thiophen‐2‐yl)ethane‐1,2‐dione and (1R,2R)‐(−)‐diaminocyclohexane afforded a homochiral quinoxaline derivative (4aR,8aR)‐2,3‐di(thiophen‐2‐yl)‐decahydroquinoxaline ( 1 ). Fluorescent analysis exhibits an intense blue emission band at 386 nm. Crystallographic analysis showed that it belongs to chiral space group P21 with ferroelectric behavior, and a typical ferroelectric feature of electric hysteresis loop was obtained. The dielectric constant of compound 1 was measured at room temperature.  相似文献   

20.
Highly efficient phosphor‐converted light‐emitting diodes (pc‐LEDs) are popular in lighting and high‐tech electronics applications. The main goals of present LED research are increasing light quality, preserving color point stability and reducing energy consumption. For those purposes excellent phosphors in all spectral regions are required. Here, we report on ultra‐narrow band blue emitting oxoberyllates AELi2[Be4O6]:Eu2+ (AE=Sr,Ba) exhibiting a rigid covalent network isotypic to the nitridoalumosilicate BaLi2[(Al2Si2)N6]:Eu2+. The oxoberyllates’ extremely small Stokes shift and unprecedented ultra‐narrow band blue emission with fwhm ≈25 nm (≈1200 cm?1) at λem=454–456 nm result from its rigid, highly condensed tetrahedra network. AELi2[Be4O6]:Eu2+ allows for using short‐wavelength blue LEDs (λem<440 nm) for efficient excitation of the ultra‐narrow band blue phosphor, for application in violet pumped white RGB phosphor LEDs with improved color point stability, excellent color rendering, and high energy efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号