首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New pyranoid ε‐sugar amino acids were designed as building blocks, in which the carboxylic acid and the amine groups were placed in positions C2 and C3 with respect to the tetrahydropyran oxygen atom. By using standard solution‐phase coupling procedures, cyclic homooligomers containing pyranoid ε‐sugar amino acids were synthesized. Conformation analysis was performed by using NMR spectroscopic experiments, FTIR spectroscopic studies, X‐ray analysis, and a theoretical conformation search. These studies reveal that the presence of a methoxy group in the position C4 of the pyran ring produces an important structural change in the cyclodipeptides. When the methoxy groups are present, the structure collapses through interresidue hydrogen bonds between the oxygen atoms of the pyran ring and the amide protons. However, when the cyclodipeptide lacks the methoxy groups, a U‐shape structure is adopted, in which there is a hydrophilic concave face with four oxygen atoms and two amide protons directed toward the center of the cavity. Additionally, we found important evidence of the key role played by weak electrostatic interactions, such as the five‐membered hydrogen‐bonded pseudocycles (C5) between the amide protons and the ether oxygen atoms, in the conformation equilibrium of the macrocycles and in the cyclization step of the cyclic tetrapeptides.  相似文献   

2.
As a new type of foldamer, β‐aminoxy peptides have the ability to adopt novel β N? O turns or β N? O helices in solution. Herein, we describe a new subclass of β‐aminoxy peptide, that is, peptides of acyclic β2, 3‐aminoxy acids (NH2OCHR1CHR2COOH), in which the presence of two chiral centers provides insight into the effect of backbone stereochemistry on the folding of β‐aminoxy peptides. Acyclic β2, 3‐aminoxy peptides with syn and anti configurations have been synthesized and their conformations investigated by NMR, IR, and circular dichroism (CD) spectroscopic, and X‐ray crystallographic analysis. The β N? O turns or β N? O helices, which feature nine‐membered rings with intramolecular hydrogen bonds and have been identified previously in peptides of β3‐ and β2, 2‐aminoxy acids, are also predominantly present in the acyclic β2, 3‐aminoxy peptides with a syn configuration and N? O bonds gauche to the Cα? Cβ bonds in both solution and the solid state. In the acyclic β2, 3‐aminoxy peptides with an anti configuration, an extended strand (i.e., non‐hydrogen‐bonded state) is found in the solid state, and several conformations including non‐hydrogen‐bonded and intramolecular hydrogen‐bonded states are present simultaneously in nonpolar solvents. These results suggest that the backbone stereochemistry does affect the folding of the acyclic β2, 3‐aminoxy peptides. Theoretical calculations on the conformations of model acyclic β2, 3‐aminoxy peptides with different backbone stereochemistry were also conducted to elucidate structural characteristics. Our present work may provide useful guidelines for the design and construction of new foldamers with predicable structures.  相似文献   

3.
4.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

5.
Experimental and theoretical data indicate that, for α‐fluoroamides, the F? C? C(O)? N(H) moiety adopts an antiperiplanar conformation. In addition, a gauche conformation is favoured between the vicinal C? F and C? N(CO) bonds in N‐β‐fluoroethylamides. This study details the synthesis of a series of fluorinated β‐peptides ( 1 – 8 ) designed to use these stereoelectronic effects to control the conformation of β‐peptide bonds. X‐ray crystal structures of these compounds revealed the expected conformations: with fluorine β to a nitrogen adopting a gauche conformation, and fluorine α to a C?O group adopting an antiperiplanar conformation. Thus, the strategic placement of fluorine can control the conformation of a β‐peptide bond, with the possibility of directing the secondary structures of β‐peptides.  相似文献   

6.
7.
8.
We report a direct catalytic asymmetric Mannich‐type addition of α,β‐unsaturated γ‐butyrolactam to α‐ethoxycarbonyl ketimines promoted by a soft Lewis acid/Brønsted base cooperative catalyst. A thiophosphinoyl group on the nitrogen of ketimines was crucial for both electrophilic activation and α‐addition of γ‐butyrolactams. The obtained aza‐Morita–Baylis–Hillman‐type products bear an α‐amino acid architecture with a tetra‐substituted stereogenic center.  相似文献   

9.
A very efficient synthesis of orthogonally protected 1H‐azepine‐4‐amino‐4‐carboxylic acid, abbreviated as Azn, a conformationally restricted analogue of ornithine, was realized. It was obtained on a gram scale in good overall yield in five steps, three of which did not require isolation of the intermediates, starting from the readily available 1‐amino‐4‐oxo‐cyclohexane‐4‐carboxylic acid. Both enantiomers were used for the preparation of pentapeptide models containing Ala, Aib, and Azn. Conformational studies using both spectroscopic techniques (NMR, CD) and molecular dynamics on model 5‐mer peptides showed that the (R)‐Azn isomer possesses a marked helicogenic effect.  相似文献   

10.
11.
Incorporation of silicon‐containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of β‐silicon‐β3‐amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of β‐silicon‐β3‐amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20‐fold increase in calcein release as compared with wild‐type alamethicin.  相似文献   

12.
13.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

14.
Chiral cyclic α,α‐disubstituted amino acids, (3S,4S)‐ and (3R,4R)‐1‐amino‐3,4‐(dialkoxy)cyclopentanecarboxylic acids ((S,S)‐ and (R,R)‐Ac5cdOR; R: methyl, methoxymethyl), were synthesized from dimethyl L ‐(+)‐ or D ‐(?)‐tartrate, and their homochiral homoligomers were prepared by solution‐phase methods. The preferred secondary structure of the (S,S)‐Ac5cdOMe hexapeptide was a left‐handed (M) 310 helix, whereas those of the (S,S)‐Ac5cdOMe octa‐ and decapeptides were left‐handed (M) α helices, both in solution and in the crystal state. The octa‐ and decapeptides can be well dissolved in pure water and are more α helical in water than in 2,2,2‐trifluoroethanol solution. The left‐handed (M) helices of the (S,S)‐Ac5cdOMe homochiral homopeptides were exclusively controlled by the side‐chain chiral centers, because the cyclic amino acid (S,S)‐Ac5cdOMe does not have an α‐carbon chiral center but has side‐chain γ‐carbon chiral centers.  相似文献   

15.
Optically active peptide foldamers Tfa-[(S)-(alphaEt)Leu]-[(S)-(alphaEt)Nva]-Deg-[(S)-(alphaEt)Nle]-OEt (10) and Tfa-[(S)-(alphaEt)Val]-[(S)-(alphaEt)Leu]-[(S)-(alphaEt)Nva]-Deg-[(S)-(alphaEt)Nle]-OEt (11) composed of diverse alpha-ethylated alpha,alpha-disubstituted alpha-amino acids were synthesized. The dominant conformation of these peptides in solution was an unusual, fully extended planar conformation, and that in the crystal state was both right-handed (P) and left-handed (M) 3(10)-helical structures in 10 and a P 3(10)-helical structure in 11, respectively. The preferred planar C(5) conformation of the peptides prepared from chiral alpha-ethylated alpha,alpha-disubstituted alpha-amino acids was drastically different from the 3(10)-helical structure of the peptides prepared from chiral alpha-methylated alpha,alpha-disubstituted alpha-amino acids.  相似文献   

16.
β‐Lactams with contiguous tetra‐ and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4‐exo‐trig cyclization of axially chiral enolates generated from readily available α‐amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β‐lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β‐lactam enolates thus formed through reversible intramolecular conjugate addition (4‐exo‐trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work‐up procedure) to give β‐lactams in up to 97 % ee.  相似文献   

17.
18.
With the aim of developing polyproline type II helix (PPII) secondary‐structure mimetics for the modulation of prolin‐rich‐mediated protein–protein interactions, the novel diproline mimetic ProM‐2 was designed by bridging the two pyrrolidine rings of a diproline (Pro–Pro) unit through a Z‐vinylidene moiety. This scaffold, which closely resembles a section of a PPII helix, was then stereoselectively synthesized by exploiting a ruthenium‐catalyzed ring‐closing metathesis (RCM) as a late key step. The required vinylproline building blocks, that is, (R)‐N‐Boc‐2‐vinylproline (Boc=tert‐butyloxycarbonyl) and (S,S)‐5‐vinylproline‐tert‐butyl ester, were prepared on a gram scale as pure stereoisomers. The difficult peptide coupling of the sterically demanding building blocks was achieved in good yield and without epimerization by using 2‐(1H‐7‐azabenzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophosphate (HATU)/N,N‐diisopropylethylamine (DIPEA). The RCM proceeded smoothly in the presence of the Grubbs II catalyst. Stereostructural assignments for several intermediates were secured by X‐ray crystallography. As a proof of concept, it was shown that certain peptides containing ProM‐2 exhibited improved (canonical) binding towards the Ena/VASP homology 1 (EVH1) domain as a relevant protein interaction target.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号