首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption spectra of C2H2 have been recorded between 50 and 1450 cm−1, with a resolution always better than 0.005 cm−1, using two different Fourier transform spectrometers. Analysis of the data provided two sets of results. First, the bending levels with Σt Vt(t = 4, 5) ≤ 2 were characterized by a coherent set of 34 parameters derived from the simultaneous analysis of 15 bands, performed using a matrix Hamiltonian. The following main parameters were obtained (in cm−1): ω40 = 608.985196(14), ω50 = 729.157564(10); B0 = 1.17664632(18), α4 = −1.353535(86) × 10−3, α5 = −2.232075(40) × 10−3; q40 = 5.24858(12) × 10−3, and q50 = 4.66044(12) × 10−3, with the errors (1σ) on the last quoted digit. Second, a more complete set of bending levels with Σt Vt ≤ 4, some of which have never previously been reported, and also including V2 = 1 have been fitted to 80 parameters. This simultaneous fit involved 43 bands and used the same full Hamiltonian matrix. Some perturbations which affect the higher excited levels are discussed.  相似文献   

2.
We studied the spectral-luminescent characteristics of the luminescence of mixed-ligand polypyridine-phosphine complexes of ruthenium(II) cis-[Ru(bpy)2(PPh3)X](BF4) n with ligands 2,2′-bipyridyl (bpy) and triphenylphosphine (PPh3) and X = Cl, Br, CN, NO2, NH3, MeCN, pyridine (py), 4-aminopyridine (pyNH2), and 4,4′-bipyridyl (4,4′-bpy) in a 4: 1 EtOH-MeOH alcoholic mixture at 77 K. The radiative and nonradiative deactivation rate constants of the lowest electronically excited state of the complexes are determined. We find that triphenylphosphine has a greater effect on the photophysical characteristics of ruthenium(II) complexes compared to π-acceptor strong-field ligands, such as MeCN, CN, and NO2. At the same time, the characteristics of complexes cis-[Ru(bpy)2(PPh3)X] n+ considerably depend on the nature of the second monodentate ligand X, which is coordinated to ruthenium(II), and correlate with its position in the spectrochemical series of ligands.  相似文献   

3.
The hydrolysis of VO2+ and the complex with sulfate were studied potentiometrically, spectrophotometrically and calorimetrically, in NaCl aqueous solution (0 < I ≤ 1 mol L− 1) and at t = 25 °C. The formation of two hydrolytic species VO(OH)+ and VO2(OH)22+ and one complex with sulfate was found, with log β = − 5.65 for the reaction VO2+ + H2O = VO(OH)+ + H+, log β = − 7.02 for the reaction 2VO2+ + 2H2O = (VO)2(OH)22+ + 2H+ and log K = 1.73 for VOSO40 species (at I = 0.1 mol L− 1 and t = 25 °C). For these species, using calorimetric data, ΔH and TΔS values were also obtained. By using the above values, interactions of VO2+ with acetate (ac), malonate (mal), succinate (suc), 1,2,3-propanetricarboxylate (tca) and 1,2,3,4-butanetetracarboxylate (btc) ligands were studied potentiometrically and spectrophotometrically. The formation of ML+, ML20 and MLOH0 for ac; ML0, MLH+, ML22− and ML2H for mal; ML0, MLH+ and MLOH for suc; ML and MLH0 for tca and ML2−, MLH and MLH20 for btc were found. Formation constants are reported at I = 0.1 mol L− 1, together with SIT parameters for the dependence on ionic strength. By visible spectrophotometric measurements, λmax and εmax values for the relevant species in solution were determined.  相似文献   

4.
By using resonance-enhanced two-photon ionization, rotationally resolved spectra of the 610 band of 12C6D6 and (13C12C5D6 molecules have been obtained for the first time at a rotational temperature of 0.7 K in a pulsed supersonic beam. From the former, the values of B″ = 0.1573 ± 0.0008 cm−1, B′ = 0.1508 ± 0.0008 cm−1, and ξ′ = −0.412 ± 0.050 have been derived for rotational and Coriolis constants in the lower and upper levels of 12C6D6. Also, the spectra corresponding to 12C6H6 and 13C12C5H6 have been measured and the values B″ = 0.1892 ± 0.0008 cm−1, B′ = 0.1815 ± 0.0008 cm−1, and ξ′ = −0.586 ± 0.050 have been obtained for 12C6H6, in agreement with previous results. Rotational constants of 13C labeled benzene molecules have been geometrically deduced from the constants obtained. Experimental isotopic shifts of the vibronic origins of the 6a10 and 6b10 bands have been determined. There is agreement with previous 13C-benzene-h6 data. The present results are −0.91 ± 0.05 and 3.09 ± 0.05 cm−1 for 13C12C5D6 and −1.64 ± 0.05 and 2.64 ± 0.05 cm−1 for 13C12C5H6. The splittings of vibrational modes 6b and 6a in the 1B2u state are 4.00 ± 0.10 cm−1 for 13C12C5D6 and 4.28 ± 0.10 cm−1 for 13C12C5H6.  相似文献   

5.
We report here the first non-Kramers (NK) ESEEM and ENDOR study of a mononuclear NK center, presenting extensive parallel-mode ESEEM and ENDOR measurements on the St = 2 ferrous center of [Fe(II)ethylenediamine-N,N,N′,N′-tetraacetato]2−; [Fe(II)EDTA)]2−. The results disclose an anomalous equivalence of the experimental patterns produced by the two techniques. A simple theoretical treatment of the frequency-domain patterns expected for NK-ESEEM and NK-ENDOR rationalizes this correspondence and further suggests that the very observation of NK-ENDOR is the result of an unprecedentedly large hyperfine enhancement effect. The mixed nitrogen–carboxylato oxygen coordination of [Fe(II)EDTA]2− models that of the protein-bound diiron centers, although with a higher coordination number. Analysis of the NK-ESEEM measurements yields the quadrupole parameters for the 14N ligands of [Fe(II)EDTA]2−, K = 1.16(1) MHz, 0 ≤ η ≤ 0.05, and the analysis indicates that the electronic zero-field splitting tetragonal axis lies along the N–N direction.  相似文献   

6.
About 140 a- and b-type millimeter-wave transitions of propynal-d1, DCCCHO, were measured in the ground vibrational state. The accurate rotational and centrifugal distortion constants were determined from the observed frequencies including the previous microwave measurements. Seven microwave transitions observed by infrared-microwave double resonance were also included in the analysis. The determined constants are A = 66778.016(12), B = 4463.8489(7), C = 4177.7950(7), ΔJ = 0.0015919(5), ΔJK = −0.139214(13), ΔK = 9.4328(18), δJ = 0.0002885(4), δK = 0.03069(4), HJK = −0.817(13) × 10−6, HKJ = −9.62(4) × 10−6, HK = 0.00255(8), hJ = 0.0047(3) × 10−6, in MHz.  相似文献   

7.
The two t-butylcalix[4]arene attached ruthenium(II)-bipyridine complexes (Rubc2 and Rubc3) has been synthesized and the anion recognition studies have been carried out using emission techniques. The binding of anions, which are sensed by the complexes, are studied by UV-visible and emission techniques. The complex Rubc2 recognizes the Cl?, H2PO4 ? and AcO? anions. The complex Rubc3 recognizes the Br? and AcO? anions. The AcO? quenches the emission intensity of both two complexes but the other anion increases the emission intensity of the complexes. The excited state lifetime and transient absorption studies were carried out the AcO? facilitates non radiative pathway. The other anions stabilize the excited state and facilitate the radiative pathway.  相似文献   

8.
Here, we demonstrate the low-temperature (480–612 °C) synthesis of carbon nanotubes (CNTs) on different metallic underlayers (i.e., NiV, Ir, Ag, Pt, W, and Ta) using diffusion (dc) plasma-enhanced (~20 W, −600 V) chemical vapour deposition (DPECVD). The catalyst used is bi-layered Fe/Al and the feedstock used is a mixture of C2H2 and NH3 (1:4). The crucial component is the diffusion of radical ions and hydrogen generated such as H2/H+/H2+/NH3+/CH2+/C2H2+ (which are confirmed by in-situ mass spectroscopy) from the nozzle, where it is inserted for most effective plasma diffusion between a substrate and a gas distributor.  相似文献   

9.
The high-resolution infrared spectrum of perchloric acid has been observed in the 700–750 cm−1region using the infrared beamline at the MAX-I electron storage ring in Lund, Sweden. The spectrum displays extensive rotational structure due to a typeaband and is assigned to ν5, the HO–ClO3stretch. Approximately 1100 transitions in H35ClO4and ca. 300 in H37ClO4have been fitted using single subband analysis, generating constants for transitions having the sameK. The origin of H35ClO4K= 3tseries is found to be 726.9971(4) cm−1. Rotationally resolved infrared line positions are now available for the identification of HClO4in the atmosphere, which may be produced by the heterogeneous oxidation of chlorine containing species in the stratosphere.  相似文献   

10.
Transverse relaxation-optimized NMR experiment (TROSY) for the measurement of three-bond scalar coupling constant between 1Hαi−1 and 15Ni defining the dihedral angle ψ is described. The triple-spin-state-selective experiment allows measurement of 3JHαN from 13Cα, 15N, and 1HN correlation spectra H2O with minimum resonance overlap. Transverse relaxation of 13Cα spin is minimized by using spin-state-selective filtering and by acquiring a signal longer in 15N-dimension in a manner of semi-constant-time TROSY evolution. The 3JHαN values obtained with the proposed α/β-HN(CO)CA-J TROSY scheme are in good agreement with the values measured earlier from ubiquitin in D2O using the HCACO[N] experiment.  相似文献   

11.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

12.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

13.
A novel hidden reaction of the phenoxyl radical (C6H5O?) with a specific daughter is found to significantly alter its hitherto accepted coupling reactions' scheme. Transient characterizations and mechanistic evaluations in highly acidic to strongly alkaline aqueous medium reveal this concurrent reaction competing favorably in nanosecond–microsecond time‐scale with the five distinct C6H5O? + C6H5O? reactions, which produce various phenolic end‐products as reported earlier (M. Ye and R. H. Schuler, J. Phys. Chem. 1989, 93, 1898). Presently, only the symmetric 4,4′‐dioxo transient precursor, O?C6H5? H5C6?O that leads to the stable 4,4′‐biphenol product, gets partially oxidized by a fraction of remaining C6H5O?. The resulting secondary transient ?C12H9O2 radical is generated at diffusion‐controlled rate, k > 5.0 × 109 M?1 s?1, and follows an independent chemistry. Consequently, when the previously reported five coupled end product distribution ratios were appropriately updated, the respective fractional values revealed a closer match for the symmetric 2,2′‐ and 4,4′‐biphenols with their suggested coupling reaction branching probabilities based on the atomic spin‐density distributions in the C6H5O? radical (P. Neta, R. W. Fessenden, J. Phys. Chem., 1974, 78, 523). Results also suggest that in the remaining fraction, differential solvation in aqueous medium of various orientation‐related encounter complexes (C6H5O…C6H5O) formed during coupling favors rearrangement only toward 2,4′‐biphenolic product, at the cost of 2‐ and 4‐phenoxyphenolic species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

15.
The gas phase ultraviolet (UV) excimer laser induced photolysis of the gallium-alkyls Ga(t-C4H9) n (CH3)3–n (n=0, 1, 2, 3) was studied, using photolysis wavelengths of 308, 248, and 193 nm. The photofragments Ga, GaH, and GaCH3 were detected by laser ionization time-of-flight mass spectroscopy, while the hydrocarbon products CH4, C2H6, HC(CH3)3 and H2C=C(CH3)2 were identified using Fourier transform infrared (FTIR) spectroscopy. The formation of the GaH photofragment, and a high olefin-to-alkane product ratio, for Ga(t-C4H9)2(CH3) and Ga(t-C4H9)3 are interpreted to indicate a -hydrogen elimination process. However, -hydrogen elimination only occurs after fission of the weakest Ga-C bond, thus no -hydride elimination is observed for Ga(t-C4H9)(CH3)2. Detection of C2H6 for Ga(CH3)3 and Ga(t-C4H9)(CH3)2, but not for Ga(t-C4H9)2(CH3), shows that under our experimental conditions the formation of ethane is as a result of the reductive elimination of the methyl groups, and is not due to the recombination of two free methyl radicals.  相似文献   

16.
13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,C=O, creatine CH2, CH3, and CC=N, taurine C2,3, bicarbonate HCO3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.  相似文献   

17.
This paper reports on the synthesis, characterization and photophysical properties of the Tb3+ organophosphonates, TbH(O3PR)2, methylphosphonate (R=CH3), ethylphosphonate (R=C2H5), propylphosphonate (R=C3H7), and phenylphosphonate (R=C6H5). The layered Tb3+ organophosphonates were characterized by X-ray diffraction, IR spectroscopy, TG and elemental analysis. The interlayer distances of the Tb3+ organophosphonates evaluated by the X-ray diffractogram were 9.50 Å for TbH(O3PCH3)2, 12.18 Å for TbH(O3PC2H5)2, 14.84 Å for TbH(O3PC3H7)2 and 15.20 Å for TbH(O3PC6H5)2. The Tb3+ luminescence data revealed highly green emissive materials when they were excited at 368 nm, where the characteristic 5D4 → 7F J (J=6, 5, 4 and 3) transitions of Tb3+ were observed at 488, 543, 585 and 619 nm, respectively. The lifetime of the Tb3+ 5D4 → 7F5 transition (λexc=368 nm and λem=543 nm) for the Tb3+ organophosphonates was evaluated from the decay curves, which values were of 2.88, 2.22, 2.14 and 2.59 ms, respectively for TbH(O3PCH3)2, TbH(O3PC2H5)2, TbH(O3PC3H7)2 and TbH(O3PC6H5)2. TG analysis revealed that these materials are thermally highly stable, with no water molecule in their composition, which makes them potential luminophores.  相似文献   

18.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

19.
TheY2Σ+–X2Πinear-infrared electronic transition of CuO was observed at high resolution for the first time. The spectrum was recorded with the Fourier transform spectrometer associated with the McMath–Pierce Solar Telescope at Kitt Peak. The excited CuO molecules were produced in a low pressure copper hollow cathode sputter with a slow flow of oxygen. Constants for theY2Σ+states of CuO are:T0= 7715.47765(54) cm−1,B= 0.4735780(28) cm−1,D= 0.822(12) × 10−6cm−1,H= 0.46(10) × 10−10cm−1, γ = −0.089587(42) cm−1, γD= 0.1272(79) × 10−6cm−1,bF= 0.12347(22) cm−1, andc= 0.0550(74) cm−1. ImprovedX2Πiconstants are also presented.  相似文献   

20.
Summary Positronium reactions with Cu(II) ions in aqueous solution were investigated by measuring the concentration dependence of lifetime spectra and of 1D-ACAR curves for the following Cu (II) complexes: [Cu(H2O)6[2+, [Cu(NH3)4 (H2O)2]2+ and [Cu(EDTA)(H2O)]2−. The combined analysis of lifetime and ACAR data shows that Cu(II) ions:a) reduce the formation of positronium (inhibition effect),b) promote both ortho ⇌ para conversion and redox reactions. It was also found that inhibition and reaction rate constants are affected by the ligand type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号