首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
理论研究了H_2~+分子双H核对高次谐波辐射的贡献.结果表明:在少周期激光场下,由于激光场的反对称性,负向H核辐射谐波强度高于正向H核.随着激光脉宽增大,激光波形趋于对称,因此导致双H核辐射谐波的反对称结构减小.谐波辐射的时频分析图显示,当激光场为正向时(E(t)0.0),负向H核辐射谐波强度高于正向H核;当激光场反向时(E(t)0.0),正向H核辐射谐波强度高于负向H核.最后,通过分析含时电子波包及H_2~+的缀饰态给出了电子在双H核之间转移的原因.  相似文献   

2.
理论研究了H2+、D2+、T2+辐射高次谐波的特点.结果表明,在核运动影响下,不仅奇次谐波呈现红移现象,而且谐波光谱呈现非奇次谐波.随着核质量增大,奇次谐波频移和非几次谐波强度都减弱.但是随着激脉宽增大,非奇次谐波的产生明显被增强.理论分析表明,谐波频移是由谐波辐射在激光上升和下降区间的非对称性导致的;非奇次谐波是由于分子对称性在较大核间距离处遭破坏产生的.  相似文献   

3.
数值研究了啁啾激光驱动H_2~+辐射谐波的特点.结果表明,(1)在低强度和高强度激光驱动下,谐波光谱分别呈现红移和蓝移现象.引入正负向啁啾参数后,谐波频移和谐波辐射强度都可以得到调控.(2)谐波光谱在高强度激光驱动下呈现非奇次谐波.理论分析表明,非奇次谐波产生的原因是双H核频移不一致所导致的不对称相消干涉引起的.  相似文献   

4.
理论研究了电荷共振增强电离和离解电离在H~+_2谐波辐射中的贡献.结果表明:在少周期激光场下,谐波辐射只由电荷共振增强电离贡献产生,谐波光谱呈规则的奇次谐波.在多周期激光场下,谐波辐射由电荷共振增强电离和离解电离共同贡献产生,但是电荷共振增强电离在谐波辐射中起主要作用.并且低阶谐波呈现偶次谐波.最后,通过分析含时核运动,电离几率以及谐波辐射时频分析图解释了少周期和多周期激光场驱动H~+_2辐射谐波的过程.  相似文献   

5.
刘辉  冯立强 《原子与分子物理学报》2021,38(2):024002-024002-3
理论研究了多周期激光相位角对H2+谐波频移的影响。结果表明,在多周期激光驱动下H2+谐波光谱在零相位时呈现蓝移现象。随着激光相位增大,谐波光谱由蓝移转向红移。随着激光相位进一步增大,谐波红移减弱。理论分析表明谐波频移是由激光上升和下降区域谐波辐射强度变化引起的。并且谐波辐射强度变化对激光相位比较敏感。  相似文献   

6.
理论研究了H2+分子双H核对高次谐波辐射的贡献。结果表明:在少周期激光场下,由于激光场的反对称性,负向H核辐射谐波强度高于正向H核。随着激光脉宽增大,激光波形趋于对称,因此导致双H核辐射谐波的反对称结构减小。谐波辐射的时频分析图显示,当激光场为正向时(E(t) > 0.0),负向H核辐射谐波强度高于正向H核;当激光场反向时(E(t) < 0.0),正向H核辐射谐波强度高于负向H核。最后,通过分析含时电子波包及H2+的缀饰态给出了电子在双H核之间转移的原因。  相似文献   

7.
理论研究了HeH~(2+)分子发射高次谐波的空间分布情况.结果表明:分子谐波发射主要集中在He核和H核附近.当核间距离较小时,He核辐射谐波强度要比H核辐射谐波强度高2~3个数量级.当核间距离较大时,He核辐射谐波强度要比H核辐射谐波强度高4~5个数量级.当空间非均匀激光场引入后,谐波截止能量得到延伸,并且,随着空间非均匀激光场位置由负向到正向移动(-100 a.u.到100a.u.),谐波截止得到进一步延伸.但是He核辐射谐波强度依然大于H核.最后,通过叠加谐波可获得脉宽在60 as的超短脉冲.  相似文献   

8.
理论研究了HeH2+分子发射高次谐波的空间分布情况。结果表明:分子谐波发射主要集中在He核和H核附近。当核间距离较小时,He核辐射谐波强度要比H核辐射谐波强度高2~3个数量级。当核间距离较大时,He核辐射谐波强度要比H核辐射谐波强度高4~5个数量级。当空间非均匀激光场引入后,谐波截止能量得到延伸,并且,随着空间非均匀激光场位置由负向到正向移动(-100 a.u.到100 a.u.),谐波截止得到进一步延伸。但是He核辐射谐波强度依然大于H核。最后,通过叠加谐波可获得脉宽在60 as的超短脉冲。  相似文献   

9.
理论研究了HeH2+分子发射高次谐波的空间分布情况。结果表明:分子谐波发射主要集中在He核和H核附近。当核间距离较小时,He核辐射谐波强度要比H核辐射谐波强度高2~3个数量级。当核间距离较大时,He核辐射谐波强度要比H核辐射谐波强度高4~5个数量级。当空间非均匀激光场引入后,谐波截止能量得到延伸,并且,随着空间非均匀激光场位置由负向到正向移动(-100 a.u.到100 a.u.),谐波截止得到进一步延伸。但是He核辐射谐波强度依然大于H核。最后,通过叠加谐波可获得脉宽在60 as的超短脉冲。  相似文献   

10.
理论研究了长脉宽激光驱动下啁啾引入时刻对H_2~+高次谐波光谱的影响.结果表明,在长脉宽激光驱动下,H_2~+在激光前半程区域具有较高的谐波辐射效率.因此,在激光前半程引入啁啾调控可获得高强度光谱连续区.此外,在啁啾调控区域引入单极激光场可以进一步获得高能谐波连续区.最后,叠加谐波连续区的谐波,可获得39 as的孤立脉冲.  相似文献   

11.
The nonadiabatic effects in the molecular high-order harmonic generation (MHHG) from H2+ and its isotope have been theoretically investigated beyond the Born-Oppenheimer approximations. It is found that (i) due to the asymmetric contributions of the harmonic emission on the rising and the falling parts of the laser field, the frequency red-shifts in the MHHG can be found. As the initial vibrational state or the pulse intensity increases, the red-shifts of the harmonics are decreased and even the blue-shifts of the harmonics can be found in the higher pulse intensity with the higher vibrational state. With the increase of the pulse duration, the frequency red-shifts and the blue-shifts in the MHHG are decreased and enhanced, respectively. The shifts of the harmonics from the heavy nuclei are decreased compared with those from the light nuclei. (ii) Due to the coupling of the electron-nuclear dynamics, the non-odd harmonics can be produced at the larger internuclear distance. With the increase of the initial vibrational state or the pulse duration, the generations of the non-odd harmonics can be enhanced. As the pulse intensity increases, the intensities of the non-odd harmonics are first increased and then decreased at the much larger pulse intensity. Due to the slower nuclear motion, the generations of the non-odd harmonics are decreased as the nuclear mass increases. (iii) With the increase of the alignment angle of the molecule ions, the nonadiabatic effects in MHHG (including the shifts of the harmonics and the generations of the non-odd harmonics) are decreased.  相似文献   

12.
Electron (z)‐nuclear (R) dynamics in the molecular high‐order harmonic generation (MHHG) from H2+ driven by the plasmonic nonhomogeneous field, generated by the surface plasmon polaritons in the bowtie‐shaped nanostructure, have been theoretically investigated through solving the two dimensional time‐dependent Schrödinger equation with the Non‐Bohn‐Oppenheimer approximation. It is found that (i) due to the plasmonic enhancement of the laser intensity, the harmonic cutoff can be extended when the spatial position of H2+ is away from the gap center of the nanostructure. However, due to the limit of the gap size, the threshold value of the harmonic cutoff can be obtained at a given position of H2+. (ii) Due to the asymmetric enhancement of the laser intensity in space, the extended higher harmonics are respectively from E(t) > 0 a.u. or E(t) < 0 a.u. for the cases of the positive and the negative spatial position of H2+. As a result, the intensities of the extended higher harmonics are different and can be controlled by changing the carrier‐envelope phase and the pulse duration of the laser field. (iii) In the few‐cycle pulse duration, the MHHG mainly comes from the multi‐photon resonance ionization (MPRI), while as the pulse duration increases, the MPRI, the charge‐resonance enhanced ionization (CREI) and even the dissociative ionization (DI) are contributed to the MHHG. Moreover, as the spatial position of H2+ moves, the contributions of the MHHG from the MPRI, the CERI and the DI can be controlled. (iv) The contributions of the MHHG from the two‐H nuclei have been investigated and found that when E(t) > 0 a.u., the intensities of the harmonics from the negative‐H is higher than those from the positive‐H; while when E(t) < 0 a.u., the intensities of the harmonics from the positive‐H plays the main role in the MHHG. Moreover, the multi‐minima, caused by the two‐center interference can also be found. (v) Finally, by superposing a properly selected harmonics, a single isolated attosecond pulse (SIAP) with the full width at half maximum (FWHM) of 34 as can be obtained.  相似文献   

13.
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse.Both classical theory and the quantum wavelet transform method are used to understand the physics of harmonics.By adjusting the carrier envelope phase of the fundamental field,the intensities of harmonic spectra increase and the harmonics in the plateau become regular.Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics,and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

14.
贺海翔  郭雅慧  何国钟 《中国物理 B》2012,21(8):80202-080202
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and quantum wavelet transform method are used to understand the physics of harmonics. By adjusting the carrier envelope phase of the fundamental field, the intensities of harmonic spectra increase and the harmonics in the plateau become regular. Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics, and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号