首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of hydrogels resulting from the self-assembly of low molecular weight (LMW) hydrogelators is a rapidly expanding area of study. Fluorenylmethoxycarbonyl (Fmoc) protected aromatic amino acids derived from phenylalanine (Phe) have been shown to be highly effective LMW hydrogelators. It has been found that side chain functionalization of Fmoc-Phe exerts a significant effect on the self-assembly and hydrogelation behavior of these molecules; fluorinated derivatives, including pentafluorophenylalanine (F(5)-Phe) and 3-F-phenylalanine (3-F-Phe), spontaneously self-assemble into fibrils that form a hydrogel network upon dissolution into water. In this study, Fmoc-F(5)-Phe-OH and Fmoc-3-F-Phe-OH were used to characterize the role of the C-terminal carboxylic acid on the self-assembly and hydrogelation of these derivatives. The C-terminal carboxylic acid moieties of Fmoc-F(5)-Phe-OH and Fmoc-3-F-Phe-OH were converted to C-terminal amide and methyl ester groups in order to perturb the hydrophobicity and hydrogen bond capacity of the C-terminus. Self-assembly and hydrogelation of these derivatives was investigated in comparison to the parent carboxylic acid compounds at neutral and acidic pH. It was found that hydrogelation of the C-terminal acids was highly sensitive to solvent pH, which influences the charge state of the terminal group. Rigid hydrogels form at pH 3.5, but at pH 7 hydrogel rigidity is dramatically weakened. C-terminal esters self-assembled into fibrils only slowly and failed to form hydrogels due to the higher hydrophobicity of these derivatives. C-terminal amide derivatives assembled much more rapidly than the parent carboxylic acids at both acidic and neutral pH, but the resultant hydrogels were unstable to shear stress as a function of the lower water solubility of the amide functionality. Co-assembly of acid and amide functionalized monomers was also explored in order to characterize the properties of hybrid hydrogels; these gels were rigid in unbuffered water but significantly weaker in phosphate buffered saline. These results highlight the complex nature of monomer/solvent interactions and their ultimate influence on self-assembly and hydrogelation, and provide insight that will facilitate the development of optimal amino acid LMW hydrogelators for gelation of complex buffered media.  相似文献   

2.
By exploiting orthogonal hydrogen bonding involving supramolecular synthons and hydrophobic/hydrophilic interactions, a new series of simple organic salt based hydrogelators derived from pyrene butyric acid and its β‐alanine amide derivative, and various primary amines has been achieved. The hydrogels were characterised by microscopy, table‐top rheology and dynamic rheology. FTIR, variable‐temperature 1H NMR and emission spectroscopy established the role of various supramolecular interactions such as hydrogen bonding and π–π stacking in hydrogelation. Single‐crystal X‐ray diffraction (SXRD) studies supported the conclusion that orthogonal hydrogen bonding involving amide–amide and primary ammonium monocarboxylate (PAM) synthons indeed played a crucial role in hydrogelation. The hydrogels were found to be stimuli‐responsive and were capable of sensing ammonia and adsorbing water‐soluble dye (methylene blue). All the hydrogelators were biocompatible (MTT assay in RAW 264.7 cells), indicating their suitability for use in drug delivery.  相似文献   

3.
The supramolecular organogelation of alcohols was observed in relatively hydrophobic amphiphiles with a short oligo(ethylene glycol) unit and three long alkyl chains at room temperature, while the hydrogelation occurred in more hydrophilic gelators with a longer poly(ethylene glycol) unit and two long alkyl chains at various temperatures. When a hot aqueous solution of some of the synthetic hydrogelators was cooled down, the supramolecular hydrogel was formed at room temperature. In some other amphiphiles with less intermolecular interactivity in water at room temperature, a reverse phase transition of sol to gel was observed by elevating the temperature of their aqueous systems, especially below a physiological temperature, 37 °C. The supramolecular hydrogelation at a low or high temperature was dependent on a slight molecular modification of the synthetic amphiphiles.  相似文献   

4.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

5.
The preparation of supramolecular hydrogels containing various inorganic acids and salts using L-lysine-based hydrogelators is conducted and their thermal stabilities, gel strengths, FT-IR spectra, and electron micrographs are measured. These hydrogelators can form supramolecular hydrogels over a wide pH range and contain inorganic acids and salts. The supramolecular hydrogels based on ester-type hydrogelators have good thermal stabilities (high Tgel), while the hydrogelator with a carboxyl group forms a thermally sensitive gel with high mechanical strength. Furthermore, the gelation mechanism is discussed using FT-IR spectroscopy and TEM observations.  相似文献   

6.
Short peptides appropriately linked with an azobenzene conformational switch were found to be motif and pH dependant supramolecular hydrogelators. The hydrogelation properties of the short peptides linked with the conformational switch were studied in detail with respect to dependence on amino acid residue, pH and salt effect. The presence of amino acids with aromatic side chains such as Phe and Tyr was found to be favorable for the short peptides to gel water at an appropriate pH range. Cationic amino acid residues such as Arg and Lys in the short peptides were found to be unfavorable for hydrogelation. pH and salt effect were also found to be important factors for the hydrogelation properties of the short peptides. A series of short peptides with bioactive sequences were linked with the conformational switch and their hydrogelation properties were investigated. Photoresponsive supramolecular hydrogels were realized based on the E-/Z- transition of the conformational switch upon light irradiation. Proper combination of amino acid residues in the short peptides resulted in smart supramolecular hydrogels with responses to multiple stimuli.  相似文献   

7.
This article highlights the aggregation behaviour of potential low molecular weight hydrogelators on attracting surfaces. Our goal was the development of a method, which enables the finding of new hydrogelators that are not easily recognizable as such because they only form instable or no hydrogels in aqueous solution. To this end, a series of negatively charges azo-dyes was synthesized and positive charged glass slides were immersed into their aqueous solutions. All dyes showed supramolecular organization and significant concentration on the attracting glass surface. Microscopic investigations mostly revealed the formation of crystals. However, one compound, (1-(2-n-octylphenylazo)-2-hydroxy-6-naphthalenesulphonate, selectively formed a hydrogel on the surface whereas it does not gel in aqueous solution. This reveals the hydrogel as the stable form of this compound under equilibrium conditions. This method of surface-induced hydrogelation might facilitate the identification of new hydrogelators. Further more, it might also allow the mimicking of surface gelation as a process of biological relevance.  相似文献   

8.
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.  相似文献   

9.
Developing cavity-based supramolecular hydrogels is in its infancy because not many such hydrogelators are available. Reported herein is our creation of rigid cavitand cyclotriveratrylene (CTV) based hydrogelators from the molecular backbones of CTVs that were in limited cases shown to form organogels. For doing so deprotonable -COOH or protonable -NH(2) was introduced as terminal group into the rigid and hydrophobic CTV backbones. We thus successfully obtained optically anisotropic supramolecular hydrogels from these new CTVs hydrogelators with excellent thermostability and high tolerance towards strong electrolytes. The obtained CTV-1 and CTV-2 hydrogels are luminescent and exhibit reversible gel-to-sol and sol-to-gel transitions upon pH variations. The success in creating CTV-1 and CTV-2 hydrogelators on the basis of the skeleton of a CTV-organogelator suggests that balancing the hydrophilic and hydrophobic characters of the ionic and hydrophobic moieties well in the gelator molecule is important for designing a promising hydrogelator.  相似文献   

10.
Simple L-lysine derivatives, N(alpha)-hexanoyl-N(epsilon)-lauroyl-L-lysine (1), its alkali metal salts (2-4), and two-component compounds that consist of 1 with 2 to 4, were synthesized and their hydrogelation and organogelation properties were studied. Addition of hydrochloric acid to an aqueous solution of the alkali metal salt at room temperature produced a translucent hydrogel. This hydrogelation occurred as a result of a change in nanostructure from micelle-like aggregates to nanofibers, which was induced by partial protonation of the carboxylate to form a carboxylic acid. On the other hand, two-component low-molecular-weight gelators exhibited amphiphilic gelation behavior and functioned as not only hydrogelators, but also as organogelators. FTIR studies revealed that lateral ionic interactions between the carboxylate, alkali metal cation, carboxylic acid, and protons, in addition to hydrogen-bonding and van der Waals interactions play a very important role in hydrogelation. Furthermore, it was found that the water-insoluble carboxylic acid compound underwent a precipitation-dissolution transition with a thermally reversible sol-gel transition in the two-component gelator systems.  相似文献   

11.
The present study describes the rational design and synthesis of amino acid-based amphiphilic hydrogelators, which were systemically fine-tuned at the head group to develop pH-responsive hydrogels. To understand the basic structural requirements of a low molecular weight amphiphilic hydrogelator, 10 analogous amphiphiles based on L-phenylalanine and L-tyrosine with structurally related head group were synthesized. Among them, three with quaternary ammonium substitution at the head group formed transparent hydrogels at room temperature while others were unable to gelate water. To establish correlations between the head group architecture of the gelators and their supramolecular arrangements, a variety of spectroscopic and microscopic techniques were investigated that showed that a balance between hydrophilicity and hydrophobicity is required to achieve hydrogelation. Interestingly, the gelator with tyrosinate in its head group showed remarkable response toward external pH. All hydrogels including the pH-responsive one were used in the controlled and/or pH-triggered release of entrapped (with in hydrogels) vitamin B12 and cytochrome c at different pHs. Since the hydrogels were formed at room temperature without heating, this could be very important during the entrapment of biomolecules such as proteins because of their heat sensitivity. At biological pH (7.4), the release of entrapped biomolecules from all three hydrogels was caused by diffusion through the gel structure, but at endosomal pH (approximately 5.5) and further lower pH, the release rate of biomolecules from the pH-responsive hydrogel with tyrosinate head group (pKa approximately equal to 7.2) increased by 9-10-fold compared to that observed at physiological pH, because of gel dissolution. Retention of the structure and activity of released biomolecule has established the prospect of the hydrogel as an efficient drug delivery vehicle.  相似文献   

12.
Zhimou Yang  Jun Du  Bei Zhang  Bing Xu 《Tetrahedron》2007,63(31):7349-7357
Most magnetorheological materials, composed of magnetic microparticles in a liquid, require significant amounts of magnetic particles and a large magnetic field to achieve the desired effects. Here, we report on a new type of magnetorheological materials consisting of small amounts of magnetic nanoparticles (0.8 wt %) but exhibiting large rheological change (i.e., a gel-sol transition) upon the application of a small magnetic field. We use self-assembly to create hybrid nanofibers, which consist of supramolecular hydrogelators and magnetic nanoparticles, as the matrices of the hydrogel. Localized in the nanofibers at a distance of 1-2 nm, the magnetic nanoparticles occupy a small volume fraction of the hydrogel, significantly enhancing the magnetic dipole interactions between them, which results in the large magnetoresponse. This strategy generates a hierarchical nanostructure and eliminates several drawbacks of the simple mixture of polymers with nanoparticles, and thus provides a new methodology that uses magnetic force to control the nanostructures and properties of soft materials.  相似文献   

13.
Supramolecular hydrogels have attracted great attention due to their special properties. In this research, bio-based supramolecular hydrogels were conveniently constructed by heating and ultrasounding two components of dehydroabietic acid with a rigid tricyclic hydrophenanthrene skeleton and morpholine. The microstructures and properties of hydrogels were investigated by DSC, rheology, SAXS, CD spectroscopy, and cryo-TEM, respectively. The critical gel concentration (CGC) of the hydrogel was 0.3 mol·L−1 and the gel temperature was 115 °C. In addition, the hydrogel showed good stability and mechanical properties according to rheology results. Cryo-TEM images reveal that the microstructure of hydrogel is fibrous meshes; its corresponding mechanism has been studied using FT-IR spectra. Additionally, oil-in-water gel emulsions were prepared by the hydrogel at a concentration above its CGC, and the oil mass fraction of the oil-in-water gel emulsions could be freely adjusted between 5% and 70%. This work provides a convenient way to prepare bio-based supramolecular hydrogels and provides a new method for the application of rosin.  相似文献   

14.
Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.  相似文献   

15.
Gelation mechanism is of utmost importance to the rational design of supramolecular hydrogelators. Although both kinetic and thermodynamic controlled self‐assembly processes have been widely studied in hydrogels, the formation relationship between crystalline and amorphous gel networks still remains ambiguous. Herein, a gelation transformation from a kinetic to a thermodynamic process was achieved by balancing the rigidity and flexibility of the inorganic–organic co‐assemblies. By using polyoxometalates and zwitterionic amphiphiles, the transition morphologies between crystalline and amorphous hydrogel networks were evidenced for the first time, as ordered wormlike micelles. Given the versatile applications of hydrogels in biological systems and materials science, these findings may highlight the potential of inorganic–organic binary supramolecular hydrogelators and fill in the blank between kinetic and thermodynamic controlled gelation processes.  相似文献   

16.
手性超分子水凝胶能够仿生细胞外手性微环境,在组织工程中具有特殊的意义,但其强度和稳定性较低,仍然面临着巨大的挑战.本文将无机羟基磷灰石纳米颗粒(HAP)引人到苯丙氨酸衍生物手性超分子水凝胶(LPF)中以改善其力学性能和生物功能.圆二色光谱和扫描电子显微镜结果显示,HAP掺入后LPF组装手性发生反转.与纯LPF水凝胶相比...  相似文献   

17.
A family of L-lysine-based low-molecular-weight compounds with various positively charged terminals (pyridinium and imidazolium derivatives) was synthesized and its gelation behavior in water was investigated. Most of the compounds can be very easily synthesized in high yields (total yields >90 %), and they function as excellent hydrogelators that form hydrogels below 1 wt %; particularly, N(epsilon)-lauroyl-N(alpha)-[11-(4-tert-butylpyridinium)undecanoyl]-L-lysine ethyl ester (2 c) and N(epsilon)-lauroyl-N(alpha)-[11-(4-phenylpyridinium)undecanoyl]-L-lysine ethyl ester (2 d), which are able to gel water at concentration of only 0.2 wt %. This corresponds to a gelator molecule that entraps more than 20 000 water molecules. All hydrogels are very stable and maintain the gel state for at least 9 months. TEM observations demonstrated that these hydrogelators self-assemble into a nanoscaled fibrous structure; a three-dimensional network is then formed by the entanglement of the nanofibers. An FTIR study in [D(6)]DMSO/D(2)O and in CHCl(3) revealed the existence of intermolecular hydrogen bonding between the amide groups. This was further supported by a (1)H NMR study in [D(6)]DMSO/H(2)O. A luminescence study, in which ANS (1-anilino-8-naphtharenesulfonic acid) was used as a probe, indicated that the hydrogelators self-assemble into nanostructures possessing hydrophobic pockets at a very low concentration. Consequently, it was found that the driving forces for self-assembly into a nanofiber are hydrogel bonding and hydrophobic interactions.  相似文献   

18.
l-Lysine-based hydrogelators can form supramolecular hydrogels over a wide pH range and contain inorganic salts and acids, especially, 3 forms hydrogels containing 1 M HCl and H2SO4 at 1 g/L.  相似文献   

19.
Photoresponsive supramolecular hydrogel was fabricated from a small azobenzene-bridged dicationic pyridinium salt in the aqueous solution. The UV-vis light triggered reversible gel-sol transformation of such low-molecular-weight supramolecular hydrogel was systematically investigated through various analytical techniques.  相似文献   

20.
Enzyme‐catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme‐instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号