首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nanocarrier‐based cancer therapy suffers from poor tumor penetration and unsatisfied therapeutical efficacy, as its vascular extravasation efficiency is often compromised by the intrinsic physiological heterogeneity in tumor tissues. In this work, novel near infrared (NIR)‐responsive CuS‐loaded nanogels are prepared to deliver anticarcinogen into the tumor. These hybrid polymeric nanogels possess high photothermal conversion efficiency, and are able to load a large amount of antitumor drug (e.g., doxorubicin [DOX]). More importantly, the thermal heat could induce self‐destruction of the big‐size framework of hybrid nanogels into small nanoparticles, which greatly facilitates tumor penetration to release DOX deep inside the tumor, as validated by photoacoustic (PA) imaging which exhibits 26.3 times enhancement at the interior region compared to signals of groups without laser irradiation. Such structural alteration, combined with strong photothermal and chemotherapy effects, leads to remarkable inhibition of tumor growth in mice. As a result, this NIR‐induced disintegration of CuS‐loaded nanogels provides a novel drug delivery strategy and might open a new window for clinical cancer treatment.  相似文献   

2.
Simple construction and manipulation of low‐molecular‐weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)‐polypropylene glycol containing self‐complementary multiple hydrogen‐bonded Cy moieties is developed, which undergoes spontaneous self‐assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase‐transition temperature and temperature‐induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug‐entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX‐loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX‐loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature‐responsive nanocarrier has highly promising potential for controlled release drug delivery systems.

  相似文献   


3.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

4.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

5.
A novel pH‐responsive magnetic nanogels were developed with the aim of targeted delivering and simultaneously releasing of newly synthesized Au(III)‐based anticancer drug, Au(1,7‐Phen)Br3. The obtained nanogels were characterized by FT‐IR, DLS, EDAX, TEM, XRD, ICP‐Ms and MRI. The TEM images showed that the nanogels had a spherical shape with a mean diameter of 20 nm. The in vitro release studies of Au (III)‐loaded nanogels showed a pH‐triggered controlled release of drugs. The in vitro cytotoxicity assay of samples to human cervical cancer HeLa cell lines indicated that the Au(III)‐loaded magnetic nanogels exert higher cytotoxicity in comparison with free Au(III) complex. Fluorescent microscope images indicated that these magnetic nanogels possessed notable cell specific targeting in vitro in the presence of an external magnetic field. The results show that this superparamagnetic nanocarrier is a promising candidate for inhibiting growth of tumor cells.  相似文献   

6.
Herein, the synthesis and potential application as cargo delivery systems of thermo‐responsive poly(N‐vinylcaprolactam) (PVCL)‐based, pH‐responsive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA)‐based, and thermo‐, and pH‐responsive PDEAEMA/PVCL‐based core–shell nanogels are reported. All the nanogels have been synthesized using different dextran‐methacrylates (Dex‐MAs) as macro‐cross‐linkers. Doxorubicin hydrochloride (DOXO), an anticancer drug, has been effectively loaded into nanogels via hydrogen‐bonding interactions between ? OH groups of DOXO and ? OH groups of Dex‐MA chains. Drug‐release profiles at various pHs, and the cytocompatibility of the DOXO‐loaded nanogels have been assessed in vitro using cervical cancer HeLa and breast cancer MDA‐MB‐231 cell lines. In all the cases, the DOXO release is controlled by Fickian diffusion and case‐II transport, being the diffusional process dominant. In addition, DOXO‐loaded nanogels are efficiently internalized by HeLa and MDA‐MB‐231 cells and DOXO is progressively released in time. Therefore, nanogels synthesized could be suitable and potentially useful as nanocarriers for antitumor drug delivery. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1694–1705  相似文献   

7.
《先进技术聚合物》2018,29(5):1372-1376
Much progress has been made toward stimuli‐responsive polysaccharide‐based selective tumor therapy not only because polysaccharides have nontoxic biodegradability and biocompatibility but also because their stimuli‐sensitive characteristics enable the proper transport of payloads into tumors. Here, we attempted to deliver an antitumor drug, doxorubicin (DOX), using starch‐based microparticles coupled with pH‐responsive 3‐(diethylamino)propylamine. The microparticles of starch conjugated with 3‐(diethylamino)propylamine (SDEAP) allowed for the change in hydrophobicity of SDEAPs in a pH‐dependent manner. The results revealed that SDEAPs effectively carried and released DOX and selectively killed tumor cells under acidic condition. Overall, this study suggests that DOX‐loaded SDEAPs can be further explored as a strategy for applications to acidic tumor‐targeting implants owing to the drug‐deliver efficiency and tumor selectivity.  相似文献   

8.
Accomplishing efficient delivery of a nanomedicine to the tumor site will encounter two contradictions as follows: 1) a contradiction between prolonged circulation time and endocytosis by cancer cells; 2) a dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. While developing a nanomedicine which can solve the above two contradictions simultaneously is still a challenge, here, a multi‐stimuli‐responsive polymeric prodrug (PLys‐co‐(PLys‐DA)‐co‐(PLys‐SS‐PTX))‐b‐PLGLAG‐mPEG (P‐PEP‐SS‐PTX‐DA) is synthesized which is multi‐sensitive to overexpressed matrix metalloproteinase‐2 (MMP‐2), low pH, and high concentration of glutathione in tumors. The P‐PEP‐SS‐PTX‐DA can be dePEGylated and reversed from negative at normal physiological pH to positive charge at tumor extracellular microenvironment; in this way, it can solve the contradiction between prolonged circulation time and endocytosis by cancer cells. Owing to the high reductive conditions in cancer cells, P‐PEP‐SS‐PTX‐DA is ruptured to release paclitaxel (PTX) intracellular efficiently; therefore, it can resolve the dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. These indicate that the multi‐stimuli‐responsive polymeric prodrug has potential application prospects in drug delivery and cancer therapy.  相似文献   

9.
A simple process is developed to fabricate metallo‐supramolecular nanogels (MSNs) by the metallo‐supramolecular‐coordinated interaction between histidine and iron‐meso‐tetraphenylporphin. MSNs are composed of histidine‐modified dextran (DH) and iron‐meso‐tetraphenylporphin (Fe–Por) and exhibit excellent biocompatibility and stability. MSNs show pH responsiveness in the intracellular mildly acidic environment, which has great potential for acid‐triggered drug release delivery. In vitro drug release profiles demonstrate that the pH‐dependent disassembly of MSNs to histidine and Por results in a quicker release rate of loaded‐DOX at pH 5.3, while at pH 7.4 MSNs could hinder the release of loaded‐DOX due to the enhanced stability of MSNs.

  相似文献   


10.
Photo/pH dual‐responsive amphiphilic diblock copolymers with alkyne functionalized pendant o‐nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide‐alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid‐sensitive Schiff‐base linkage. The resultant prodrug copolymers self‐assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well‐defined morphology with an average size of 20–40 nm. The dual‐stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light‐controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH‐sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual‐stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual‐stimuli‐response have significant potential applications as a smart nanomedicine against cancer.  相似文献   

11.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

12.
Nowadays, the stability and on-demand release of drug carriers are still to be solved. To meet the demand of these issues, we developed a reactive oxygen species (ROS) responsive selenium-containing polyphosphoesters nanogel (PSeP) by a facile one-step ring-opening polymerization of the novel monomer 4-selenoctane-1,8-diyl bis(propylphosphatelane) (Se-COP) with polyethylene glycol (mPEG) employed as the macroinitiator. Their structure was confirmed by NMR, FT-IR and GPC. The crosslinked core-shell structure imparted the nanogels with excellent dimensional stability according to the dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, the selenide groups endowed the nanogels with rich ROS responsiveness when subjected to the stimuli of H2O2, thus the drug-loaded PSeP nanogels displayed swollen behaviors leading to an activated doxorubicin hydrochloride (DOX · HCl) release. The release mechanisms fitted by the Ritger-Peppas power-law model also proved the swollen release process. MTT assays exhibited that the PSeP nanogels were nontoxic up to a tested concentration of 50 μg mL?1 by A549 and HEK293, and the DOX-loaded PSeP had a high anti-cancer behaviour against A549 cancer cells. Additionally, these nanogels possessed enhanced intracellular drug release by CLSM. Therefore, these results highlighted that the selenium-containing polyphosphoesters nanogels could be a potential platform for the ROS-sensitive drug delivery.  相似文献   

13.
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether‐block‐poly(2‐methacryl ester hydroxyethyl disulfide‐graft‐CPT) (MPEG‐SS‐PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt % in aqueous solution. In in vitro release studies, these MPEG‐SS‐PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX ? HCl), could also be introduced into the prodrug with a high loading amount. The DOX ? HCl‐loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH‐responsive NP system might become a promising carrier to improve drug‐delivery efficacy.  相似文献   

14.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

15.
In this study, we report pH‐responsive polysaccharidic nanogels comprising starch grafted with 3‐(diethylamino)propylamine (DEAP, as an inner soft nanogel core) and poly(ethylene glycol) (PEG, as an outer hydrophilic nanogel shell). Here, the DEAP moieties (pKb ~ pH 7.0) enhance the lipophilicity of the nanogel core at pH 7.4, improving the loading efficiency of an antitumor model drug (docetaxel [DTX]) in the core. However, the DEAP moieties could be protonated below pH 7.0, resulting in the mediation of ion‐dipole interactions with hydroxyl groups abundant in starch backbone. This event causes the electrostatic condensation of the nanogel core and enables the acceleration of drug release by squeezing of the core. We demonstrated that the nanogels selectively release the drug given a weakly acidic pH stimulus. These drug release trends are reversible with changes in pH. As a result, the nanogels are able to efficiently reduce MDA‐MB‐231 tumor cell population in acidic pH environments.  相似文献   

16.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

17.
A surfactant‐free emulsion‐based approach is developed for preparation of nanogels. A water‐in‐oil emulsion is generated feasibly from a mixture of water and a solution of disulfide‐containing hyperbranched PEGylated poly(amido amine)s, poly(BAC2‐AMPD1)‐PEG, in chloroform. The water droplets in the emulsion are stabilized and filled with poly(BAC2‐AMPD1)‐PEG, and the crosslinked poly(amido amine)s nanogels are formed via the intermolecular disulfide exchange reaction. FITC‐dextran is loaded within the nanogels by dissolving the compound in water before emulsification. Transmission electron microscopy and dynamic light scattering are applied to characterize the emulsion and the nanogels. The effects of the homogenization rate and the ratio of water/polymer are investigated. Redox‐induced degradation and FITC‐dextran release profile of the nanogels are monitored, and the results show efficient loading and redox‐responsive release of FITC‐dextran. This is a promising approach for the preparation of nanogels for drug delivery, especially for neutral charged carbohydrate‐based drugs.

  相似文献   


18.
The fabrication of hierarchical magnetic nanomaterials with well‐defined structure, high magnetic response, excellent colloidal stability, and biocompatibility is highly sought after for drug‐delivery systems. Herein, a new kind of hollow‐core magnetic colloidal nanocrystal cluster (HMCNC) with porous shell and tunable hollow chamber is synthesized by a one‐pot solvothermal process. Its novelty lies in the “tunability” of the hollow chamber and of the pore structure within the shell through controlled feeding of sodium citrate and water, respectively. Furthermore, by using the ligand‐exchange method, folate‐modified poly(acrylic acid) was immobilized on the surface of HMCNCs to create folate‐targeted HMCNCs (folate‐HMCNCs), which endowed them with excellent colloidal stability, pH sensitivity, and, more importantly, folate receptor‐targeting ability. These assemblages exhibited excellent colloidal stability in plasma solution. Doxorubicin (DOX), as a model anticancer agent, was loaded within the hollow core of these folate‐HMCNCs (folate‐HMCNCs‐DOX), and drug‐release experiments proved that the folate‐HMCNCs‐DOX demonstrated pH‐dependent release behavior. The folate‐HMCNCs‐DOX assemblages also exhibited higher potent cytotoxicity to HeLa cells than free doxorubicin. Moreover, folate‐HMCNCs‐DOX showed rapid cell uptake apart from the enhanced cytotoxicity to HeLa cells. Experimental results confirmed that the synthesized folate‐HMCNCs are smart nanovehicles as a result of their improved folate receptor‐targeting abilities and also because of their combined pH‐ and magnetic‐stimuli response for applications in drug delivery.  相似文献   

19.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

20.
To compare the chemotherapeutic efficacy determined by extra‐ and intracellular drug release strategies, poly(ortho ester amide)‐based drug carriers (POEAd‐C) with well‐defined main‐chain lengths, are successfully constructed by a facile method. POEAd‐C3‐doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5–7.2), while POEAd‐C6‐DOX can rapidly release drug following gradual swelling at intracellular pH (5.0–6.0). In vitro cytotoxicity shows that POEAd‐C3‐DOX exhibits more toxic effect on tumor cells than POEAd‐C6‐DOX at extracellular pH, but POEAd‐C6‐DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd‐C6‐DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd‐C3‐DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号