首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

2.
A benzoxazine compound with a maleimide group, 3‐phenyl‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (HPM‐Ba), was prepared from N‐(4‐hydroxyphenyl)maleimide, formaldehyde, and aniline. The chemical structure of HBM‐Ba was identified by FT‐IR, 1H‐NMR, and elemental analysis. HPM‐Ba showed a melting point of 52–55 °C and good solubility in common organic solvents. HPM‐Ba showed a two‐stage process of thermal polymerization. The first stage arose from the polymerization of maleimide groups, and the second one was the ring‐opening reaction of benzoxazine groups. Fusible polymaleimides with a Tg of around 100 °C could be obtained by thermally polymerizing HPM‐Ba at 130 °C. Further polymerizing the polymaleimides at 240 °C resulted in a completely cured resin showing a Tg at 204 °C. Good thermal stability and self‐extinguishing behavior was observed with the cured polybenzoxazine resins. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5954–5963, 2004  相似文献   

3.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

4.
We report our work for preparing cross‐linked polyimide via a series of imide functional benzoxazine resins as precursors. The structures of synthesized monomers have been confirmed by 1H NMR and FT‐IR. Among this class of benzoxazine monomers, the ortho‐imide functional benzoxazine resins show useful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross‐linked polyimides based on ortho‐imide functional benzoxazine, an additional route is adopted to form a more thermally stable cross‐linked polybenzoxazole with the release of carbon dioxide. The ortho‐imide functional benzoxazine resins show the possibility to form high performance and even super high performance thermosets with low cost and easy processability. The thermal properties are evaluated by DSC and TGA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1330–1338  相似文献   

5.
A diethylphosphonate‐containing benzoxazine compound (DEP‐Bz) to be used as a multi‐functional reaction agent for preparation of high performance polybenzoxazine thermosetting resins has been reported. The chemical structure of DEP‐Bz has been characterized with FTIR, 1H NMR, and elemental analysis. The phosphonate groups of DEP‐Bz could convert into phosphonic acid groups which could catalyze the ring‐opening addition reaction of benzoxazines, to demonstrate the thermally latent catalytic effect of DEP‐Bz on the polymerization of benzoxazine compounds. Moreover, DEP‐Bz could also serve as a reactive‐type modifier for polybenzoxazines and other thermosets. DEP‐Bz modified polybenzoxazine resins have shown relatively low reaction temperature (about 190 °C), high mechanical strength with a storage modulus of about 3.0 GPa, and high flame retardancy with a limit oxygen index of about 32. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3523–3530  相似文献   

6.
The new conjugated polyacetylene derivative dehydrated poly(4-hydroxy-4-phenyl-1-butyne) [dehydrated poly(HPB)] was synthesized from poly(4-hydroxy-4-phenyl-1-butyne) [poly(HPB)], which was obtained by the polymerization of 4-hydroxy-4-phenyl-1-butyne. The resulting dehydrated poly(HPB) was soluble in common organic solvents. The dehydrated poly(HPB) was found to have extended conjugated polyene structure. The dehydrated poly(HPB) was thermally stable up to 300°C. The electrical conductivity of I2-doped dehydrated poly(HPB) was 10−2 S cm−1. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 949–953, 1998  相似文献   

7.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

8.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

10.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

11.
The synergism in the glass‐transition temperature (Tg) of ternary systems based on benzoxazine (B), epoxy (E), and phenolic (P) resins is reported. The systems show the maximum Tg up to about 180 °C in BEP541 (B/E/P = 5/4/1). Adding a small fraction of phenolic resin enhances the crosslink density and, therefore, the Tg in the copolymers of benzoxazine and epoxy resins. To obtain the ultimate Tg in the ternary systems, 6–10 wt % phenolic resin is needed. The molecular rigidity from benzoxazine and the improved crosslink density from epoxy contribute to the synergistic behavior. The mechanical relaxation spectra of the fully cured ternary systems in a temperature range of −140 to 350 °C show four types of relaxation transitions: γ transition at −80 to −60 °C, β transition at 60–80 °C, α1 transition at 135–190 °C, and α2 transition at 290–300 °C. The partially cured specimens show an additional loss peak that is frequency‐independent as a result of the further curing process of the materials. The ternary systems have a potential use as electronic packaging molding compounds as well as other highly filled systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1687–1698, 2000  相似文献   

12.
Benzoxazines containing various additional functional groups have been extensively reported to improve the properties of polybenzoxazines. In this work, a novel amino‐containing benzoxazine (PDETDA‐NH2) was conveniently synthesized from diethyltoluenediamine (DETDA), 2‐hydroxybenzaldehyde, and paraformaldehyde and was used as a hardener for diglycidyl ether of bisphenol‐A (DGEBA). The curing behaviors of PDETDA‐NH2 and PDETDA‐NH2/DGEBA systems were studied by DSC, FT‐IR, and 1H NMR. When curing, PDETDA‐NH2 was firstly polymerized to N,O‐acetal‐type polymer and then rearranged to Mannich‐type polymer at elevated temperature, while the addition reaction between amino and benzoxazine was discouraged because of the steric hindrance of alkyl substituents. During PDETDA‐NH2/DGEBA curing, it was found that the reactions happened in the order of addition polymerization of amino and epoxide, ring‐opening polymerization of benzoxazine, etherification between phenolic hydroxyl of the polymerized benzoxazine, and epoxide. Compared with DETDA cured DGEBA, PDETDA‐NH2 cured DGEBA showed higher modulus, higher char yield, and much lower water uptake.  相似文献   

13.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

14.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

15.
The preparation of lustrous conducting polyacetylene films by the polymerization of acetylene with vinyltitanium species as initiators was studied. Organotitanium species were generated by the alkylation of titanium vinylcarbene complexes with tert‐butyl chloride. Solid‐state 13C NMR and IR analyses of the obtained polyacetylene indicated that polyacetylene with a trans configuration was produced. The use of titanocene(II) species Cp2Ti[P(OEt)3]2 and titanium vinylcarbene complexes for the preparation of polyacetylene films was also studied. The morphology of the films and the mechanisms of polymerization are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2663–2669, 2002  相似文献   

16.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

17.
Generally, protection and deprotection procedures of amino groups are required in preparing propargyl ether‐containing benzoxazines. In this study, we report a facile, deprotection‐free preparation of a propargyl ether‐containing phosphinated benzoxazine (2) from the nucleophilic substitution of a phenolic OH‐containing phosphinated benzoxazine (1) and propargyl bromide in the catalysis of potassium carbonate. The structure of (2) was characterized and confirmed by a high‐resolution mass spectrum, 1H, 13C, 1H‐1H, 1H‐13C nuclear magnetic resonance (NMR) spectra, and X‐ray single crystal diffractogram. infrared (IR) and differential scanning calorimetry were used to monitor the ring‐opening of benzoxazine and crosslinking of propargyl ether. The microstructure and the structure–property relationship of the resulting homopolymers and copolymers are discussed. The Tg of homopolymer of (2) is 208 °C by dynamic mechanical analysis, the coefficient of thermal expansion is 43 ppm/°C, and Td 5% (N2) is 393 °C, respectively, which are higher than those of the homopolymer of (1) . Similar trends were observed in the copolymerization system. The results demonstrate the beneficial effect of crosslinking afforded by the propargyl ether group is higher than that by the phenolic OH group. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

19.
A vinyl‐terminated benzoxazine (VB‐a), which could be polymerized through ring‐opening polymerization, was synthesized through the Mannich condensation of bisphenol A, formaldehyde, and allylamine. This VB‐a monomer was then subjected to blending with poly(ethylene oxide) (PEO), followed by thermal curing, to form poly(VB‐a)/PEO blends. The specific interactions, miscibility, morphology, and thermal properties of these blends were investigated with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Before curing, we found that PEO was miscible with VB‐a, as evidenced by the existence of a single composition‐dependent glass transition temperature (Tg) for each composition. The FTIR spectra revealed the presence of hydrogen‐bonding interactions between the hydroxyl groups of poly(VB‐a) and the ether groups of PEO. Indeed, the ring‐opening reaction and subsequent polymerization of the benzoxazine were facilitated significantly by the presence of PEO. After curing, DMA results indicated that the 50/50 poly(VB‐a)/PEO blend exhibited two values of Tg: one broad peak appeared in the lower temperature region, whereas the other (at ca. 327 °C, in the higher temperature region) was higher than that of pristine poly(VB‐a) (301 °C). The presence of two glass transitions in the blend suggested that this blend system was only partially miscible. Moreover, SEM micrographs indicated that the poly(VB‐a)/PEO blends were heterogeneous. The volume fraction of PEO in the blends had a strong effect on the morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 644–653, 2007  相似文献   

20.
Aspartic acid‐based novel poly(N‐propargylamides), i.e., poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid β‐benzyl ester N′‐propargylamide] [poly( 1 )] and poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid α‐benzyl ester N′‐propargylamide] [poly( 2 )] with moderate molecular weights were synthesized by the polymerization of the corresponding monomers 1 and 2 catalyzed with (nbd)Rh+6‐C6H5B?(C6H5)3] in CHCl3 at 30 °C for 2 h in high yields. The chiroptical studies revealed that poly( 1 ) took a helical structure in DMF, while poly( 2 ) did not in DMF but did in CH2Cl2, CHCl3, and toluene. The helicity of poly( 1 ) and poly( 2 ) could be tuned by temperature and solvents. Poly( 2 ) underwent solvent‐driven switch of helical sense, accompanying the change of the tightness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5168–5176, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号