首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We initiate a study of random walks on undirected graphs with colored edges. In our model, a sequence of colors is specified before the walk begins, and it dictates the color of edge to be followed at each step. We give tight upper and lower bounds on the expected cover time of a random walk on an undirected graph with colored edges. We show that, in general, graphs with two colors have exponential expected cover time, and graphs with three or more colors have doubly-exponential expected cover time. We also give polynomial bounds on the expected cover time in a number of interesting special cases. We described applications of our results to understanding the dominant eigenvectors of products and weighted averages of stochastic matrices, and to problems on time-inhomogeneous Markov chains. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Motivated by applications in Markov estimation and distributed computing, we define the blanket time of an undirected graph G to be the expected time for a random walk to hit every vertex of G within a constant factor of the number of times predicted by the stationary distribution. Thus the blanket time is, essentially, the number of steps required of a random walk in order that the observed distribution reflect the stationary distribution. We provide substantial evidence for the following conjecture: that the blanket time of a graph never exceeds the cover time by more than a constant factor. In other words, at the cost of a multiplicative constant one can hit every vertex often instead of merely once. We prove the conjecture in the case where the cover time and maximum hitting time differ by a logarithmic factor. This case includes almost all graphs, as well as most “natural” graphs: the hypercube, k-dimensional lattices for k ≥ 2, balanced k-ary trees, and expanders. We further prove the conjecture for perhaps the most natural graphs not falling in the above case: paths and cycles. Finally, we prove the conjecture in the case of independent stochastic processes. © 1996 John Wiley & Sons, Inc. Random Struct. Alg., 9 , 403–411 (1996)  相似文献   

3.
A close relation between hitting times of the simple random walk on a graph, the Kirchhoff index, the resistance-centrality, and related invariants of unicyclic graphs is displayed. Combining graph transformations and some other techniques, sharp upper and lower bounds on the cover cost (resp. reverse cover cost) of a vertex in an n-vertex unicyclic graph are determined. All the corresponding extremal graphs are identified.  相似文献   

4.
We give general bounds (and in some cases exact values) for the expected hitting and cover times of the simple random walk on some special undirected connected graphs using symmetry and properties of electrical networks. In particular we give easy proofs for an N–1HN-1 lower bound and an N2 upper bound for the cover time of symmetric graphs and for the fact that the cover time of the unit cube is Φ(NlogN). We giver a counterexample to a conjecture of Freidland about a general bound for hitting times. Using the electric approach, we provide some genral upper and lower bounds for the expected cover times in terms of the diameter of the graph. These bounds are tight in many instances, particularly when the graph is a tree. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Let be a connected graph with vertices. A simple random walk on the vertex set of G is a process, which at each step moves from its current vertex position to a neighbouring vertex chosen uniformly at random. We consider a modified walk which, whenever possible, chooses an unvisited edge for the next transition; and makes a simple random walk otherwise. We call such a walk an edge‐process (or E‐process). The rule used to choose among unvisited edges at any step has no effect on our analysis. One possible method is to choose an unvisited edge uniformly at random, but we impose no such restriction. For the class of connected even degree graphs of constant maximum degree, we bound the vertex cover time of the E‐process in terms of the edge expansion rate of the graph G, as measured by eigenvalue gap of the transition matrix of a simple random walk on G. A vertex v is ?‐good, if any even degree subgraph containing all edges incident with v contains at least ? vertices. A graph G is ?‐good, if every vertex has the ?‐good property. Let G be an even degree ?‐good expander of bounded maximum degree. Any E‐process on G has vertex cover time This is to be compared with the lower bound on the cover time of any connected graph by a weighted random walk. Our result is independent of the rule used to select the order of the unvisited edges, which could, for example, be chosen on‐line by an adversary. As no walk based process can cover an n vertex graph in less than n – 1 steps, the cover time of the E‐process is of optimal order when . With high probability random r‐regular graphs, even, have . Thus the vertex cover time of the E‐process on such graphs is . © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 36–54, 2015  相似文献   

6.
This article deals with random walks on arbitrary graphs. We consider the cover time of finite graphs. That is, we study the expected time needed for a random walk on a finite graph to visit every vertex at least once. We establish an upper bound ofO(n 2) for the expectation of the cover time for regular (or nearly regular) graphs. We prove a lower bound of (n logn) for the expected cover time for trees. We present examples showing all our bounds to be tight.Mike Saks was supported by NSF-DMS87-03541 and by AFOSR-0271. Jeff Kahn was supported by MCS-83-01867 and by AFOSR-0271.  相似文献   

7.
This paper addresses the problem of virtual circuit switching in bounded degree expander graphs. We study the static and dynamic versions of this problem. Our solutions are based on the rapidly mixing properties of random walks on expander graphs. In the static version of the problem an algorithm is required to route a path between each of K pairs of vertices so that no edge is used by more than g paths. A natural approach to this problem is through a multicommodity flow reduction. However, we show that the random walk approach leads to significantly stronger‐results than those recently obtained by Leighton and Rao [Proc. of 9th International Parallel Processing Symposium, 1995] using the multicommodity flow setup. In the dynamic version of the problem connection requests are continuously injected into the network. Once a connection is established it utilizes a path (a virtual circuit) for a certain time until the communication terminates and the path is deleted. Again each edge in the network should not be used by more than g paths at once. The dynamic version is a better model for the practical use of communication networks. Our random walk approach gives a simple and fully distributed solution for this problem. We show that if the injection to the network and the duration of connection are both controlled by Poisson processes then our algorithm achieves a steady state utilization of the network which is similar to the utilization achieved in the static case situation. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 87–109, 1999  相似文献   

8.
陈海燕 《数学研究》2003,36(4):368-373
本文对有向和无向de Bruijn图上的随机游动进行了研究,得出了有向de Bruijn图上简单随机游动任意两点之间平均击中时间的显式表达式,并证明了有向和无向de Bruijn图上随机游动的快速收敛性。  相似文献   

9.
Summary. We consider random walks on classes of graphs defined on the d-dimensional binary cube ℤ2 d by placing edges on n randomly chosen parallel classes of vectors. The mixing time of a graph is the number of steps of a random walk before the walk forgets where it started, and reaches a random location. In this paper we resolve a question of Diaconis by finding exact expressions for this mixing time that hold for all n>d and almost all choices of vector classes. This result improves a number of previous bounds. Our method, which has application to similar problems on other Abelian groups, uses the concept of a universal hash function, from computer science.  相似文献   

10.
We study randomized gossip‐based processes in dynamic networks that are motivated by information discovery in large‐scale distributed networks such as peer‐to‐peer and social networks. A well‐studied problem in peer‐to‐peer networks is resource discovery, where the goal for nodes (hosts with IP addresses) is to discover the IP addresses of all other hosts. Also, some of the recent work on self‐stabilization algorithms for P2P/overlay networks proceed via discovery of the complete network. In social networks, nodes (people) discover new nodes through exchanging contacts with their neighbors (friends). In both cases the discovery of new nodes changes the underlying network — new edges are added to the network — and the process continues in the changed network. Rigorously analyzing such dynamic (stochastic) processes in a continuously changing topology remains a challenging problem with obvious applications. This paper studies and analyzes two natural gossip‐based discovery processes. In the push discovery or triangulation process, each node repeatedly chooses two random neighbors and connects them (i.e., “pushes” their mutual information to each other). In the pull discovery process or the two‐hop walk, each node repeatedly requests or “pulls” a random contact from a random neighbor and connects itself to this two‐hop neighbor. Both processes are lightweight in the sense that the amortized work done per node is constant per round, local, and naturally robust due to the inherent randomized nature of gossip. Our main result is an almost‐tight analysis of the time taken for these two randomized processes to converge. We show that in any undirected n‐node graph both processes take rounds to connect every node to all other nodes with high probability, whereas is a lower bound. We also study the two‐hop walk in directed graphs, and show that it takes time with high probability, and that the worst‐case bound is tight for arbitrary directed graphs, whereas Ω(n2) is a lower bound for strongly connected directed graphs. A key technical challenge that we overcome in our work is the analysis of a randomized process that itself results in a constantly changing network leading to complicated dependencies in every round. We discuss implications of our results and their analysis to discovery problems in P2P networks as well as to evolution in social networks. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 48, 565–587, 2016  相似文献   

11.
This work proves that the fluctuations of the cover time of simple random walk in the discrete torus of dimension at least three with large side-length are governed by the Gumbel extreme value distribution. This result was conjectured for example in Aldous and Fill (Reversible Markov chains and random walks on graphs, in preparation). We also derive some corollaries which qualitatively describe “how” covering happens. In addition, we develop a new and stronger coupling of the model of random interlacements, introduced by Sznitman (Ann Math (2) 171(3):2039–2087, 2010), and random walk in the torus. This coupling is used to prove the cover time result and is also of independent interest.  相似文献   

12.
Using spectral embedding based on the probabilistic signless Laplacian, we obtain bounds on the spectrum of transition matrices on graphs. As a consequence, we bound return probabilities and the uniform mixing time of simple random walk on graphs. In addition, spectral embedding is used in this article to bound the spectrum of graph adjacency matrices. Our method is adapted from Lyons and Oveis Gharan [13].  相似文献   

13.
This paper looks at random regular simple graphs and considers nearest neighbor random walks on such graphs. This paper considers walks where the degree d of each vertex is around (log n)a where a is a constant which is at least 2 and where n is the number of vertices. By extending techniques of Dou, this paper shows that for most such graphs, the position of the random walk becomes close to uniformly distributed after slightly more than log n/log d steps. This paper also gets similar results for the random graph G(n, p), where p = d/(n − 1). © 1996 John Wiley & Sons, Inc.  相似文献   

14.
We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limit theorem. The asymptotic type of then-step transition probabilities of the simple random walk is determined.  相似文献   

15.
宋贺  向开南 《数学学报》2017,60(6):947-954
证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths,Ann.Probab.,39(3):1122-1136]中提出的猜想:顶点可迁图上暂留简单随机游走几乎处处有无穷多个切割点.  相似文献   

16.
In this article, local limit theorems for sequences of simple random walks on graphs are established. The results formulated are motivated by a variety of random graph models, and explanations are provided as to how they apply to supercritical percolation clusters, graph trees converging to the continuum random tree and the homogenisation problem for nested fractals. A subsequential local limit theorem for the simple random walks on generalised Sierpinski carpet graphs is also presented.   相似文献   

17.
Consider a particle that moves on a connected, undirected graphG withn vertices. At each step the particle goes from the current vertex to one of its neighbors, chosen uniformly at random. Tocover time is the first time when the particle has visited all the vertices in the graph starting from a given vertex. In this paper, we present upper and lower bounds that relate the expected cover time for a graph to the eigenvalues of the Markov chain that describes the random walk above. An interesting consequence is that regular expander graphs have expected cover time (n logn).This research was done while this author was a postdoctoral fellow in the Department of Computer Science, Princeton University, and it was supported in part by DNR grant N00014-87-K-0467.  相似文献   

18.
We compute the exact asymptotic normalizations of random walks in random sceneries, for various null recurrent random walks to the nearest neighbours, and for i.i.d., centered and square integrable random sceneries. In each case, the standard deviation grows like n with . Here, the value of the exponent is determined by the sole geometry of the underlying graph, as opposed to previous examples, where this value reflected mainly the integrability properties of the steps of the walk, or of the scenery. For discrete Bessel processes of dimension d[0;2[, the exponent is . For the simple walk on some specific graphs, whose volume grows like nd for d[1;2[, the exponent is =1−d/4. We build a null recurrent walk, for which without logarithmic correction. Last, for the simple walk on a critical Galton–Watson tree, conditioned by its nonextinction, the annealed exponent is . In that setting and when the scenery is i.i.d. by levels, the same result holds with .  相似文献   

19.
We study the simple random walk on the n‐dimensional hypercube, in particular its hitting times of large (possibly random) sets. We give simple conditions on these sets ensuring that the properly rescaled hitting time is asymptotically exponentially distributed, uniformly in the starting position of the walk. These conditions are then verified for percolation clouds with densities that are much smaller than (n log n)‐1. A main motivation behind this article is the study of the so‐called aging phenomenon in the Random Energy Model, the simplest model of a mean‐field spin glass. Our results allow us to prove aging in the REM for all temperatures, thereby extending earlier results to their optimal temperature domain. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

20.
Inspired by coalescent theory in biology, we introduce a stochastic model called “multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the tensor powers of graphs and the tensor products of Markov processes. Then the coalescent random walk on graph G becomes the simple random walk on a tensor power of G. We give estimates of expected number of steps for these persons to meet all together at a specific vertex. For regular graphs, our estimates are exact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号