首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel adsorbent made of polydopamine‐functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core–shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples.  相似文献   

2.
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid‐phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high‐performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π–π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4–32 and 1.2–95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples—well water, tap water, soil, vegetable, and barbequed meat (kebab)—with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability.  相似文献   

3.
Polyaniline coated cigarette filters were successfully synthesized and used as a solid‐phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π–π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5–10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost‐effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85–98%) and a relative standard deviation <10%.  相似文献   

4.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

5.
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound‐assisted extraction and solid‐phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n‐hexane were used to achieve better results. The average recovery was 67–112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02–0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high‐fat (fish, shrimp, crab, shellfish) biological samples.  相似文献   

6.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

7.
The biomonitoring of hydroxy polycyclic aromatic hydrocarbons in urine, as a direct way to access multiple exposures to polycyclic aromatic hydrocarbons, has raised great concerns due to their increasing hazardous health effects on humans. Solid‐phase extraction is an effective and useful technique to preconcentrate trace analytes from biological samples. Here, we report a novel solid‐phase extraction method using a graphene oxide incorporated monolithic syringe for the determination of six hydroxy polycyclic aromatic hydrocarbons in urine coupled with liquid chromatography‐tandem mass spectrometry. The effect of graphene oxide amount, washing solvent, eluting solvent, and its volume on the extraction performance were investigated. The fabricated monoliths gave higher adsorption efficiency and capacity than the neat polymer monolith and commercial C18 sorbent. Under the optimum conditions, the developed method provided the detection limits (S/N = 3) of 0.02–0.1 ng/mL and the linear ranges of 0.1–1500 ng/mL for six analytes in urine sample. The recoveries at three spiked levels ranged from 77.5 to 97.1%. Besides, the intra column‐to‐column (n = 3) and inter batch‐to‐batch (n = 3) precisions were ≤ 9.8%. The developed method was successfully applied for the determination of hydroxy polycyclic aromatic hydrocarbons in urine samples of coke oven workers.  相似文献   

8.
In this study, a simultaneous determination method for nitrogen‐containing polycyclic aromatic hydrocarbons including 7‐methylquinoline, acridine, 5,6‐benzoquinoline, carbazole, and 9‐methylcarbazole was developed. This method is based on a micro‐solid phase extraction using TiO2 nanotube arrays as an adsorbent in combination with HPLC. Some factors that had an effect on the enrichment were optimized, such as sample pH, surfactant concentration, ion strength, type of eluent, equilibrium time, and desorption time. Under the optimized conditions, the linear ranges and LODs were in the range of 0.01–100 and 0.0035–0.81 μg/L, respectively. The precisions of the proposed method were <9.51% (RSD, n = 6). The developed method was validated with four real samples, and the spiked recoveries were in the range of 77–109.6%. All these results demonstrated that this novel micro‐solid‐phase extraction technique was a reliable alternative to conventional preconcentration method for the extraction and analysis of such nitrogen‐containing polycyclic aromatic hydrocarbons in complex samples.  相似文献   

9.
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectrometry. A three‐dimensional porous coating was formed with carbon nanoparticles. In combination with high‐performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor‐by‐factor optimization method. The established method exhibited good linearity (0.01–10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2–106% and 93.4–108%, respectively. The results indicated that the carbon nanoparticle‐coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons.  相似文献   

10.
A solid‐phase microextraction with carbon nanospheres coated fiber coupled with gas chromatographic detection was established for the determination of eight polycyclic aromatic hydrocarbons (naphthalene, biphenyl, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, and pyrene) in water and soil samples. The experimental parameters (extraction temperature, extraction time, stirring rate, headspace volume, salt content, and desorption temperature) which affect the extraction efficiency were studied. Under the optimized conditions, good linearity between the peak areas and the concentrations of the analytes was achieved in the concentration range of 0.5‐300 ng/mL for water samples, and in the concentration range of 6.0‐2700 ng/g for soil samples. The detection limits for the analytes were in the range of 0.12‐0.45 ng/mL for water samples, and in the range of 1.53‐2.70 ng/g for soil samples. The method recoveries of the polycyclic aromatic hydrocarbons for spiked water samples were 80.10‐120.1% with relative standard deviations less than 13.9%. The method recoveries of the analytes for spiked soil samples were 80.40‐119.6% with relative standard deviations less than 14.4%. The fiber was reused over 100 times without a significant loss of extraction efficiency.  相似文献   

11.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

12.
Basalt fibers were functionalized with gold nanoparticles and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. An in‐tube solid‐phase microextraction device was developed by packing the functionalized basalt fibers in a polyether ether ketone tube. The device was connected into high performance liquid chromatography equipment with a diode array detector to build online enrichment and analysis system. Eight polycyclic aromatic hydrocarbons were used as model analytes, important factors including sampling rate, sampling volume, organic solvent content in sample, and desorption time were investigated. Linear range (0.01–20 μg/L), detection limits (0.003–0.015 μg/L), and enrichment factors (130–1628) were given by the online analysis method. Relative standard deviations (= 5) of extraction repeatability on one tube and tube‐to‐tube repeatability were less than 5.2 and 14.7%, respectively. The analysis method was applied to detect polycyclic aromatic hydrocarbons in environmental water samples, and relative recoveries ranged from 87 to 128%.  相似文献   

13.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

14.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

15.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

16.
Magnetic polyimide poly(4,4′‐oxydiphenylene‐pyromellitimide) nanoparticles were successfully synthesized and developed for the solid‐phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3–42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π–π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41–63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6–94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1–100 μg/L (r > 0.9991) with limit of detection in the range of 0.15–0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5–99.5%) were obtained at different spiked values.  相似文献   

17.
An efficient on‐site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro‐solid‐phase extraction device placed inside a portable battery‐operated pump was used for the on‐site extraction of seawater samples. Before on‐site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on‐site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on‐site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high‐performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05–20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004–0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid‐phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9–95.2%.  相似文献   

18.
Polyetheretherketone tube is a better substrate for in‐tube solid‐phase microextraction than fused‐silica capillary and metal tube because of its resistance to high pressure and good flexibility. It was modified with a nanostructured silver coating, and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. It was connected into high‐performance liquid chromatography equipment to build the online analysis system by replacing the sample loop of a six‐port injection valve. To get the highest extraction capacity, the preparation conditions of the coating was investigated. Important extraction conditions including length of tube, sample volume, and desorption time were optimized using eight polycyclic aromatic hydrocarbons as model analytes. The tube exhibits excellent extraction efficiency toward them, with enrichment factors from 52 to 363. The online analysis method provides good linearity (0.5–100 or 1.0–100 μg/L) and low detection limits (0.15–0.30 μg/L). It has been used to determine polycyclic aromatic hydrocarbons in water samples, with relative recoveries in the range of 92.3–120%. The tube showed highest extraction ability for polycyclic aromatic hydrocarbons, higher extraction ability for hydrophobic phthalates and anilines, and almost no extraction ability for low hydrophobic phenols, due to the possible extraction mechanism including hydrophobic and electron‐rich element‐metal interactions.  相似文献   

19.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

20.
In the present study, ionic liquid (IL)‐modified Fe3O4 magnetic nanoparticles (Fe3O4) were synthesized by the thiol‐ene click reaction for magnetic solid‐phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water and smoked meat samples. An IL 1‐vinyl‐3‐butylimidazolium bromide was firstly synthesized, and then immobilized on the surface of thiol group‐functionalized Fe3O4 via a thiol‐ene click reaction. The as‐synthesized Fe3O4@ILs were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy. Various parameters (including the amount of adsorbent, extraction time, sample volume, and desorption conditions) affecting MSPE were optimized. Under the optimum conditions, the limits of detection of four PAHs in the range of 0.6–7.2 ng/L were obtained using high‐performance liquid chromatography–ultraviolet detection. The accuracy of the method was assessed by recovery measurements on spiked real samples and good recovery of 80–108% with relative standard deviations lower than 8.16% was achieved. The enrichment factors ranging from 699 to 858 were obtained for the analytes. This result indicated that the proposed method had great potential for sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号