首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic nuclear polarization (DNP) via the dissolution method has become one of the rapidly emerging techniques to alleviate the low signal sensitivity in nuclear magnetic resonance (NMR) spectroscopy and imaging. In this paper, we report on the development and 13C hyperpolarization efficiency of a homebuilt DNP system operating at 6.423 T and 1.4 K. The DNP hyperpolarizer system was assembled on a wide‐bore superconducting magnet, equipped with a standard continuous‐flow cryostat, and a 180 GHz microwave source with 120 mW power output and wide 4 GHz frequency tuning range. At 6.423 T and 1.4 K, solid‐state 13C polarization P levels of 64% and 31% were achieved for 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol:water glassing matrix doped with 15 mM trityl OX063 and 40 mM 4‐oxo‐TEMPO, respectively. Upon dissolution, which takes about 15 s to complete, liquid‐state 13C NMR signal enhancements as high as 240 000‐fold (P=21%) were recorded in a nearby high resolution 13C NMR spectrometer at 1 T and 297 K. Considering the relatively lower cost of our homebuilt DNP system and the relative simplicity of its design, the dissolution DNP setup reported here could be feasibly adapted for in vitro or in vivo hyperpolarized 13C NMR or magnetic resonance imaging at least in the pre‐clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Overhauser dynamic nuclear polarization (DNP) technique can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments owing to the magnetic spin–spin interactions between 1H nuclei of the solvent and electrons delocalized on the asphaltene in crude petroleum or asphalt. Studies on 1H Overhauser DNP enhancements at 1.53 mT are reported for benzene solvent medium with three different radical sources: Iran crude petroleum, MC30 liquid asphalt, and MC800 liquid asphalt for a range of radical concentrations. The results show that protons of benzene are good detectors for dipolar coupling.  相似文献   

3.
Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low‐γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like 1H nuclei. Small‐ and intermediate‐sized molecules, however, show strong heteronuclear cross‐relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the 13C‐bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear‐decoupled 1H spectra in natural abundance samples based on heteronuclear couplings to these same, 13C‐bonded nuclei. This results in the HyperBIRD methodology; a single‐shot combination of these two effects that can simultaneously simplify and resolve complex, congested 1H NMR spectra with many overlapping spin multiplets, while achieving 50–100 times sensitivity enhancements over conventional thermal counterparts.  相似文献   

4.
Cross‐effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic‐angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record 1H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis‐nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed.  相似文献   

5.
Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state DNP based on Overhauser effect is capable of directly enhancing polarization of all kinds of nuclei in the system. The combination of simultaneous Overhauser multi-nuclei enhancements with the multi-nuclei parallel acquisitions provides a variety of important applications in both MR spectroscopy (MRS) and image (MRI). Here we present two simple illustrative examples for simultaneously enhanced multi-nuclear spectra and images to demonstrate the principle and superiority. We have observed very large simultaneous DNP enhancements for different nuclei, such as 1H and 23Na, 1H and 31P, 19F and 31P, especially for the first time to report sodium ion enhancement in liquid. We have also obtained the simultaneous images of 19H and 31P, 19F and 31P at low field by solution-state DNP for the first time.  相似文献   

6.
We report on the assembly and performance evaluation of a 180‐GHz/6.4 T dynamic nuclear polarization (DNP) system based on a cryogen‐free superconducting magnet. The DNP system utilizes a variable‐field superconducting magnet that can be ramped up to 9 T and equipped with cryocoolers that can cool the sample space with the DNP assembly down to 1.8 K via the Joule–Thomson effect. A homebuilt DNP probe insert with top‐tuned nuclear magnetic resonance coil and microwave port was incorporated into the sample space in which the effective sample temperature is approximately 1.9 K when a 180‐GHz microwave source is on during DNP operation. 13C DNP of [1‐13C] acetate samples doped with trityl OX063 and 4‐oxo‐TEMPO in this system have resulted in solid‐state 13C polarization levels of 58 ± 3% and 18 ± 2%, respectively. The relatively high 13C polarization levels achieved in this work have demonstrated that the use of a cryogen‐free superconducting magnet for 13C DNP is feasible and in fact, relatively efficient—a major leap to offset the high cost of liquid helium consumption in DNP experiments.  相似文献   

7.
Low field dynamic nuclear polarization or low field magnetic double resonance technique enables enhanced nuclear magnetic resonance signals to be detected without increasing the strength of the polarizing field. The study reports that the dynamic nuclear polarization of 19F nuclei in hexafluorobenzene solutions doped with nitroxide, BDPA, MC800 asphaltene and MC30 asphaltene free radicals at 15 G. The 19F nuclei in all solutions gave positive DNP enhancements changing between 3.42 and 189.54, corresponding to predominantly scalar interactions with the unpaired electrons in the radicals. DNP sensitivity of 19F nuclei in hexafluorobenzene was observed to be changed significantly depending on the radical type. Nitroxide was found to have the best DNP performance among the polarizing agents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

9.
《中国化学快报》2021,32(11):3483-3486
Nanodiamond (ND) polarizer can be used for dynamic nuclear polarization (DNP), owing to unpaired electrons provided by surface defects. However, 1H enhancement via Overhauser DNP (ODNP) using ND in-situ liquid has been found much smaller than traditional radicals. Herein, we study the surface properties of ND using electron spin resonance (ESR) and Raman methods firstly. Then the enhancement of 1H ODNP is explored using ND as polarizer with different nanoparticle sizes and concentrations at home-built 0.06 T DNP spectrometer. The surface of ND with the size of 30 nm is further modification via high temperature air oxidized and the enhancement was measured. The results show that nanoparticle sizes and Raman peak intensity ratio of sp2/sp3 hybridization are approximate negative correlation and positive correlation to enhancement, respectively. Furthermore, there is no significant enhancement in the oxidation group, and a −22.5-fold 1H ODNP enhancement is achieved in-situ liquid at room temperature, which demonstrate the ND can be used as an efficient enhancer. We expect ND to play a greater role in biomedical research, especially for multimodal imaging with improving the performance of ND surface.  相似文献   

10.
NMR studies of synthetic polymers and biomacromolecules, which provide insight into the conformation and dynamics of these materials, can benefit strongly from the increased sensitivity offered by dynamic nuclear polarization (DNP) and other hyperpolarizing methods. In this study 1H DNP nuclear spin hyperpolarization of two polybutadiene samples, representing a supercooled liquid and an entangled polymer melt, is demonstrated at 0.35 T magnetic field strength and at temperatures between −80 and +50 °C. Electron spin polarization transfer from the α,γ‐bisdiphenylene‐β‐phenylallyl radical to the sample nuclei is achieved by the Overhauser and solid effect. DNP signal enhancements are studied, varying the electron spin resonance offset, microwave power, and sample temperature. The influence of spin relaxation times, line widths, and molecular dynamics are discussed. The results show promising, up to 15‐fold NMR signal enhancements using noncryogenic temperatures and an inexpensive setup that is less technically demanding than current high‐field DNP setups.

  相似文献   


11.
The nitroxide‐based free radical 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15N and/or 2H isotopic labeling of 4‐oxo‐TEMPO free radical on 13C DNP of 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13C DNP: 4‐oxo‐TEMPO, 4‐oxo‐TEMPO‐15N, 4‐oxo‐TEMPO‐d16 and 4‐oxo‐TEMPO‐15N,d16. Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13C DNP efficiency of these 15N and/or 2H‐enriched 4‐oxo‐TEMPO free radicals are relatively the same compared with 13C DNP performance of the regular 4‐oxo‐TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13C DNP signals of these samples all doubled in the same manner, and the 13C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4‐oxo‐TEMPO free radicals have negligible effects on the 13C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site‐specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP‐based approaches. We have examined in detail the effect of directly attaching mono‐ or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane‐embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)‐based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond.  相似文献   

13.
Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid‐state polarization enhancement at ambient conditions, and the maximization of 13C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's 13C behavior in nano‐ and micro‐particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid‐state experiments. It was found that 13C NMR signals could be boosted by orders of magnitude in either low‐ or room‐temperature solid‐state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin‐lattice relaxation times characteristic of diamond, coupled with a time‐independent cross‐effect‐like polarization transfer mechanism facilitated by a matching of the nitrogen‐related hyperfine coupling and the 13C Zeeman splitting. The efficiency of this solid‐state polarization process, however, is harder to exploit in dissolution DNP‐enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.  相似文献   

14.
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1H-1H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.  相似文献   

15.
Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl,3‐methoxycarbonyl‐2,2,5,5‐tetramethy pyrolidine‐1‐oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser‐enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm . The proton spin–lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3–5 mm . The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
High‐spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid‐state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd‐chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar‐coupled electron spins. Their well‐defined Gd⋅⋅⋅Gd distances in the range of 1.2–3.4 nm allowed us to elucidate the Gd⋅⋅⋅Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd⋅⋅⋅Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for 1H, 13C, and 15N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high‐spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high‐spin PAs for specific applications of DNP.  相似文献   

17.
A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ? (1H) in cross‐effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP‐optimized glycerol/water matrix (“DNP juice”) have been studied. We observe that ? (1H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e–e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e–e distance or too long a T1e can dramatically limit ? (1H). Our study also shows that the molecular structure of AMUPol is not optimal and its ? (1H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ? (1H) than AMUPol itself (by a factor of ca. 1.2).  相似文献   

18.
Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal‐to‐noise ratio. Dynamic nuclear polarization (DNP), a technique based on transfer of polarization from electron to nuclear spins, has emerged as a tool to enhance sensitivity of NMR. However, the approach in liquids still faces several challenges. Herein we report the observation of room‐temperature, liquid DNP 13C signal enhancements in organic small molecules as high as 600 at 9.4 Tesla and 800 at 1.2 Tesla. A mechanistic investigation of the 13C‐DNP field dependence shows that DNP efficiency is raised by proper choice of the polarizing agent (paramagnetic center) and by halogen atoms as mediators of scalar hyperfine interaction. Observation of sizable DNP of 13CH2 and 13CH3 groups in organic molecules at 9.4 T opens perspective for a broader application of this method.  相似文献   

19.
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197‐GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ωr/2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13C J‐couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high‐resolution nuclear magnetic resonance spectroscopy. Additionally, 13C Rabi nutation curves of ω1/2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low‐power microwave sources, and electron paramagnetic resonance detection.  相似文献   

20.
High‐field dynamic nuclear polarization (DNP) has emerged as a powerful technique for improving the sensitivity of solid‐state NMR (SSNMR), yielding significant sensitivity enhancements for a variety of samples, including polymers. Overall, depending upon the type of polymer, the molecular weight, and the DNP sample preparation method, sensitivity enhancements between 5 and 40 have been reported. These promising enhancements remain, however, far from the theoretical maximum (>1000). Crucial to the success of DNP SSNMR is the DNP signal enhancement (εDNP), which is the ratio of the NMR signal intensities with and without DNP. It is shown here that, for polymers exhibiting high affinity toward molecular oxygen (e.g., polystyrene), removing part of the absorbed (paramagnetic) oxygen from the solid‐state samples available as powders (instead of dissolved or dispersed in a solvent) increases proton nuclear relaxation times and εDNP, hereby providing up to a two‐fold sensitivity increase (i.e., a four‐fold reduction in experimental time).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号