首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self‐assembly of head‐tail type block copolymers composed of polyamidoamine dendron head block and poly(L ‐lysine) (PLL) tail block was studied using a light scattering technique and transmission electron microscopy. A PLL tail block in a head‐tail type block copolymer exhibits a coil‐to‐helix transition as a result of the change in solvent quality from water to methanol. When the PLL tail block takes a helical conformation in high methanol content, the resulting head‐tail type block copolymer has a defined three‐dimensional structure like that of a protein molecule. Self‐assemblies of such block copolymers having a totally fixed molecular shape spontaneously form polymersome‐like self‐assemblies with an extremely narrow size distribution through converging to a thermodynamically stable assembling state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1217–1223, 2009  相似文献   

2.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophilic, pH and temperature responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) block and one weakly hydrophobic, water insoluble, potentially thermoresponsive poly(hydroxy propyl methacrylate) (PHPMA) block, are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR, and FTIR spectroscopies. The PDMAEMA‐b‐PHPMA amphiphilic block copolymers self‐assemble in different nanostructured aggregates when inserted in aqueous media. The effects of different solubilization protocols, as well as the effects of solution temperature and pH on the structure of the aggregates, are studied by light scattering and fluorescence spectroscopy measurements. Experimental results indicate that there is a number of solution preparation and physicochemical parameters that allow the control and manipulation of the structure and thermoresponsive properties of PDMAEMA‐b‐PHPMA aggregates in aqueous media. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1962–1977  相似文献   

3.
4‐Hydroxythiophenol (HTP) grafted poly(styrene‐b‐acrylic acid) (PS‐b‐PAA) block copolymers (BCPs) (PS‐b‐PAA‐g‐HTP) was synthesized using the esterification reaction between the carboxyl groups and hydroxyl groups. Self‐assembly behavior of the graft copolymer in 1,4‐dioxane/water was investigated. Assemblies of different morphologies, porous, and bowl‐shaped structures, could be easily prepared. A possible mechanism for the formation of the porous and bowl‐shaped structures was discussed. The present study showed a facile method for the preparation of functionalized PS‐b‐PAA BCPs, which could easily self‐assembly into novel structures in aqueous solution. These assemblies may be used to generate new functional materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1551–1557  相似文献   

4.
Self‐immolative polymers (SIPs) undergo depolymerization in response to the cleavage of stimuli‐responsive end‐caps from their termini. Some classes of SIPs, including polycarbamates, have depolymerization rates that depend on environmental factors such as solvent and pH. In previous work, hydrophobic SIPs have been incorporated into amphiphilic block copolymers and used to prepare nanoassemblies. However, stimuli‐responsive hydrophilic blocks have not previously been incorporated. In this work, we synthesized amphiphilic copolymers composed of a hydrophobic polycarbamate SIP block and a hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) block connected by a UV light‐responsive linker end‐cap. It was hypothesized that after assembly of the block copolymers into nanoparticles, chain collapse of the PDMAEMA above its lower critical solution temperature (LCST) might change the environment of the SIP block, thereby altering its depolymerization rate. Self‐assembly of the block copolymers was performed, and the depolymerization of the resulting assemblies was studied by fluorescence spectroscopy, dynamic light scattering, and NMR spectroscopy. At 20 °C, the system exhibited a selective response to the UV light. At 65 °C, above the LCST of PDMAEMA, the systems underwent more rapid depolymerization, suggesting that the increase in rate arising from the higher temperature dominated over environmental effects arising from chain collapse. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1868–1877  相似文献   

5.
A range of block copolymers (BCs) consisting of a linear poly(methyl methacrylate) (PMMA) block linked to an aliphatic polyester dendron functionalized with azobenzene moieties have been synthesized by sequential atom transfer radical polymerization (ATRP) and Click Chemistry. Two alkyne‐functionalized PMMA homopolymers with different molecular weights were obtained by ATRP and coupled to generations 2 to 4 of azodendrons bearing an azide group at the focal points. In the case of the azodendron with the highest generation number, the length of the flexible spacer attaching the cyanoazobenzene units to the dendron has also been modified. The coupling of both blocks and purity of BCs were checked by gel permeation chromatography, nuclear magnetic resonance, and infrared spectroscopy. The thermal transitions and liquid crystalline behavior of the BCs were investigated by differential scanning calorimetry and polarized‐light optical microscopy. A morphological study was carried out by transmission electron microscopy, using samples annealed at 115 °C. Photo‐induced anisotropy was induced in thin films of these materials after annealed at 115 °C. The highest stable birefringence values were obtained for the BCs bearing 8 and 16 azobenzene units in the dendritic block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1538–1550, 2010  相似文献   

6.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

7.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Solution self‐assembly of amphiphilic “rod‐coil” copolymers, especially linear block copolymers and graft copolymers (also referred to as polymer brushes), has attracted considerable interest, as replacing one of the blocks of a coil‐coil copolymer with a rigid segment results in distinct self‐assembly features compared with those of the coil‐coil copolymer. The unique interplay between microphase separation of the rod and coil blocks with great geometric disparities can lead to the formation of unusual morphologies that are distinctly different from those known for coil‐coil copolymers. This review presents the recent achievements in the controlled self‐assembly of rod‐coil linear block copolymers and graft copolymers in solution, focusing on copolymer systems containing conjugated polymers, liquid crystalline polymers, polypeptides, and polyisocyanates as the rod segments. The discussions concentrate on the principle of controlling over the morphology of rod‐coil copolymer assemblies, as well as their distinctive optical and optoelectronic properties or biocompatibility and stimuli‐responsiveness, which afford the assemblies great potential as functional materials particularly for optical, optoelectronic and biological applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1459–1477  相似文献   

9.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

10.
In the effort towards making nanoscale objects and assemblies feasible for use as functional materials, it is imperative to obtain control over the fundamental architectures and essential to understand what experimental conditions cause the manifestation of specific morphologies. A number of factors are known to influence the shape during the self‐assembly of amphiphilic block copolymers in solution, including solvent composition, polymer length, hydrophobicity versus hydrophilicity, as well as the addition of additives that can interact with segments of the block copolymers. This research, focused on developing an understanding of the micellar architectures accessed by the amphiphilic triblock copolymer of acrylic acid, methyl acrylate, and styrene, PAA85b‐PMA40b‐PS35, as a function of the stirring rate, together with other factors, when undergoing coassembly with ethylenediamine or diethylenetriamine in water/tetrahydrofuran solutions. The work demonstrates that the rate at which the polymer solution was stirred impacts the shape of the solution‐state assemblies formed by the triblock copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

12.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

13.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
New poly(ethylene oxide)‐based block copolymers (ssBCs) with a random copolymer block consisting of a reduction‐responsive disulfide‐labeled methacrylate (HMssEt) and a thermoresponsive di(ethylene glycol)‐containing methacrylate (MEO2MA) units were synthesized. The ratio of HMssEt/MEO2MA units in the random P(MEO2MA‐co‐HMssEt) copolymer block enables the characteristics of well‐defined ssBCs to be amphiphilic or thermoresponsive and double hydrophilic. Their amphiphilicity or temperature‐induced self‐assembly results in nanoaggregates with hydrophobic cores having different densities of pendant disulfide linkages. The effect of disulfide crosslinking density on morphological variation of disulfide‐crosslinked nanogels is investigated. In response to reductive reactions, the partial cleavage of pendant disulfide linkages in the hydrophobic cores converts the physically associated aggregates to disulfide‐crosslinked nanogels. The occurrence of in‐situ disulfide crosslinks provides colloidal stability upon dilution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2057–2067  相似文献   

15.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
The effects of solvency and mole fraction of azobenzene moieties (fPAzoMA) on the photoresponsive and fluorescence behaviors of poly(acrylic acid)‐block‐poly(6‐[4‐(4′‐methoxyphenylazo)phenoxy]hexyl methacrylate) (PAA‐PAzoMA) amphiphilic diblock copolymers were investigated using UV–vis spectroscopy and fluorescence spectroscopy. The photoresponsive behavior depended strongly on the solvency and fPAzoMA. When dissolved in a PAA‐selective solvent, PAA‐PAzoMA formed micelles with PAzoMA in the micelle core. The confinement of azobenzene moieties caused a steric hindrance, thereby markedly reducing the kinetics of photoisomerization compared with that of the unconfined PAA‐PAzoMA in a nonselective solvent. Additionally, PAA‐PAzoMA dissolved in the PAA‐selective solvent caused a blue shift of the maximum absorbance, suggesting the formation of H‐aggregates of azobenzene mesogens. The high H‐aggregate content substantially reduced the fluorescence emission. Consequently, the fluorescence emission of PAA‐PAzoMA in the nonselective solvent was more intense than that in the PAA‐selective solvent. Upon UV irradiation, the enhanced bent‐shaped cis isomers disturbed the compact packing of azobenzene mesogens, which substantially enhanced the fluorescence emission. Both the photoisomerization rate and fluorescence emission decreased with an increase in fPAzoMA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 793–803  相似文献   

17.
Self‐association in aqueous solution of amphiphilic poly(acrylic acid)‐b‐poly(propylene oxide)‐b‐poly(acrylic acid) (PAA‐b‐PPO‐b‐PAA) copolymers having various outer PAA block lengths are presented. These copolymers show two thermosensitive behaviors. The first one, due to hydrogen bonds between PAA and PPO resulting in large aggregates, was observed by visible spectroscopy. The second one, due to the association of PPO middle block into aggregates, was evidenced by dynamic light scattering and pyrene fluorescence. These critical temperatures both depend on the ionization and the length of PAA blocks. The characterization of the aggregates above the critical aggregation concentration by fluorescence quenching experiments showed a very low aggregation number corresponding to dimers or trimers association depending on the conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1507–1514  相似文献   

18.
Biomimetic star‐shaped poly(ε‐caprolactone)‐b‐poly(gluconamidoethyl methacrylate) block copolymers (SPCL‐PGAMA) were synthesized from the atom transfer radical polymerization (ATRP) of unprotected GAMA glycomonomer using a tetra(2‐bromo‐2‐methylpropionyl)‐terminated star‐shaped poly(ε‐caprolactone) (SPCL‐Br) as a macroinitiator in NMP solution at room temperature. The block length of PGAMA glycopolymer within as‐synthesized SPCL‐PGAMA copolymers could be adjusted linearly by controlling the molar ratio of GAMA glycomonomer to SPCL‐Br macroinitiator, and the molecular weight distribution was reasonably narrow. The degree of crystallization of PCL block within copolymers decreased with the increasing block length ratio of outer PGAMA to inner PCL. Moreover, the self‐assembly properties of the SPCL‐PGAMA copolymers were investigated by NMR, UV‐vis, DLS, and TEM, respectively. The self‐assembled glucose‐installed aggregates changed from spherical micelles to worm‐like aggregates, then to vesicles with the decreasing weight fraction of hydrophilic PGAMA block. Furthermore, the biomolecular binding of SPCL‐PGAMA with Concanavalin A (Con A) was studied by means of UV‐vis, fluorescence spectroscopy, and DLS, which demonstrated that these SPCL‐PGAMA copolymers had specific recognition with Con A. Consequently, this will not only provide biomimetic star‐shaped SPCL‐PGAMA block copolymers for targeted drug delivery, but also improve the compatibility and drug release properties of PCL‐based biomaterials for hydrophilic peptide drugs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 817–829, 2008  相似文献   

19.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Dendron‐like poly(γ‐benzyl‐L ‐glutamate)/linear poly(ε‐caprolactone)/dendron‐like poly(γ‐benzyl‐L ‐glutamate) triblock copolymers having 2m + 1 PBLG branches (denoted as PBLG‐Dm‐PCL‐Dm‐PBLG, m = 0, 1, 2, and 3) were for the first time synthesized by utilizing ring‐opening polymerization (ROP) and click chemistry. The bifunctional azide‐terminated PCL (N3‐PCL‐N3) was click conjugated with propargyl focal point PAMAM‐typed dendrons Dm to generate Dm‐PCL‐Dm, which was then used as macroinitiator for the ROP of BLG‐NCA monomer to produce the targeted PBLG‐Dm‐PCL‐Dm‐PBLG triblock copolymers. Their molecular structures and physical properties were characterized in detail by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction (WAXD). The crystallinity of the central PCL segment within these copolymers is increasingly suppressed by the flanking PBLG wedges, whereas the PBLG segments gradually changed from a β‐sheet conformation to an α‐helix conformation with the increasing PBLG branches. These triblock copolymers formed thermoreversible organogels in toluene, and the dendritic topology of PBLG wedges controlled their critical gelation concentrations. The self‐assembled structure of organogels was further characterized by means of transmission electron microscopy, WAXD, and small‐angle X‐ray scattering. The fibers with flat ribbon morphology were clearly shown, and the gelation occurred through a self‐assembled nanoribbon mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 709–718, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号