首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assuming a gaussian basis set representation of atomic and molecular wave functions, the single‐center expansion of off‐centered spherical gaussian orbitals is exploited to calculate the one and two‐electron integrals for multielectronic atoms and molecules confined within hard spherical walls. As a validating test, the ground‐state energy of a helium atom positioned off‐center in a spherical box is calculated by applying the simplest form of the floating spherical gaussian orbital (FSGO) scheme, i.e., the use of a primitive basis set consisting of a single FSGO per electron pair. Comparison with corresponding recent accurate calculations gives supporting evidence of the adequacy of the method for its application to more elaborate gaussian‐type basis set representations for confined atoms and molecules. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 271–278, 2001  相似文献   

2.
A non‐iterative algorithm for the localization of molecular orbitals (MOs) from complete active space self consistent field (CASSCF) and for single‐determinantal wave functions on predefined moieties is given. The localized fragment orbitals can be used to analyze chemical reactions between fragments and also the binding of fragments in the product molecule with a fragments‐in‐molecules approach by using a valence bond expansion of the CASSCF wave function. The algorithm is an example of the orthogonal Procrustes problem, which is a matrix optimization problem using the singular value decomposition. It is based on the similarity of the set of MOs for the moieties to the localized MOs of the molecule; the similarity is expressed by overlap matrices between the original fragment MOs and the localized MOs. For CASSCF wave functions, localization is done independently in the space of occupied orbitals and active orbitals, whereas, the space of virtual orbitals is mostly uninteresting. Localization of Hartree–Fock or Kohn–Sham density functional theory orbitals is not straightforward; rather, it needs careful consideration, because in this case some virtual orbitals are needed but the space of virtual orbitals depends on the basis sets used and causes considerable problems due to the diffuse character of most virtual orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Basis sets developed for use with effective core potentials describe pseudo‐orbitals rather than orbitals. The primitive Gaussian functions and the contraction coefficients in the basis set must therefore both describe the valence region effectively and allow the pseudo‐orbital to be small in the core region. The latter is particularly difficult using 1s primitive functions, which have their maxima at the nucleus. Several methods of choosing contraction coefficients are tried, and it is found that natural orbitals give the best results. The number and optimization of primitive functions are done following Dunning's correlation‐consistent procedure. Optimization of orbital exponents for larger atoms frequently results in coalescence of adjacent exponents; use of orbitals with higher principal quantum number is one alternative. Actinide atoms or ions provide the most difficult cases in that basis sets must be optimized for valence shells of different radial size simultaneously considering correlation energy and spin‐orbit energy. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 516–520, 2000  相似文献   

4.
This article describes a novel algorithm for the optimization of valence bond self‐consistent field (VBSCF) wave function for a complete active space (CAS), so‐called VBSCF(CAS). This was achieved by applying the strategies adopted in the optimization of CASSCF wave functions to VBSCF(CAS) wave functions, using an auxiliary orthogonal orbital set that generates the same configuration space as the original nonorthogonal orbital set. Theoretical analyses and test calculations show that the VBSCF(CAS) method shares the same computational scaling as CASSCF. The test calculations show the current capability of VBSCF method, which involves millions of VB structures. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Efficient implementations of analytic gradients for the orbital‐optimized MP3 and MP2.5 and their standard versions with the density‐fitting approximation, which are denoted as DF‐MP3, DF‐MP2.5, DF‐OMP3, and DF‐OMP2.5, are presented. The DF‐MP3, DF‐MP2.5, DF‐OMP3, and DF‐OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density‐fitted perturbation theory (DF‐MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF‐MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z‐vector equation, back‐transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc‐pCVQZ basis set, is 0.0001–0.0002 Å. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
The applicability and limitations of the restricted virtual space (RVS) approximation within the algebraic‐diagrammatic construction (ADC) scheme for the polarization propagator up to third order is evaluated. In RVS‐ADC, not only the core but also a substantial amount of energetically high‐lying virtual orbitals is restricted in excitation energy calculations of low‐lying excited electronic states. Using octatetraene, indole, and pyridine as representative examples and different standard basis sets of triple‐zeta quality, RVS‐ADC(2) turns out to be highly useful and to have negligible effects on ππ* excited states. However, for nπ* or πσ* states, the RVS approximation is generally less reliable but better at third‐order than second‐order ADC level. In addition, a unified, basis‐set independent, thus normalized virtual orbital threshold (value) is introduced, making the RVS approximation more controllable and a priori applicable. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Auxiliary basis sets (ABS) specifically matched to the cc‐pwCVnZ‐PP and aug‐cc‐pwCVnZ‐PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y‐Pd at the second‐order Møller‐Plesset perturbation theory level. Calculation of the core‐valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution‐of‐the‐identity component of explicitly correlated calculations is also investigated, where it is shown that i‐type functions are important to produce well‐controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double‐ζ calculations produce results close to conventional quadruple‐ζ, and triple‐ζ is within chemical accuracy of the complete basis set limit. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
As a first application of the shift operators method we derive master formulas for the two‐ and three‐center one‐electron integrals involving Gaussians, Slater, and Bessel basis functions. All these formulas have a common structure consisting in linear combinations of polynomials of differences of nuclear coordinates. Whereas the polynomials are independent of the type (GTO, BTO, or STO) of basis functions, the coefficients depend on both the class of integral (overlap, kinetic energy, nuclear attraction) and the type of basis functions. We present the general expression of polynomials and coefficients as well as the recurrence relations for both the polynomials and the whole integrals. Finally, we remark on the formal and computational advantages of this approach. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 83–93, 2000  相似文献   

9.
We apply Löwdin's canonical orthogonalization method to investigate the linearly dependent problem arising from the variational calculation of atomic systems using Slater‐type orbital configuration‐interaction (STO‐CI) basis functions. With a specific arithmetic precision used in numerical computations, the nonorthogonal STO‐CI basis is easily linearly dependent when the number of basis functions is sufficiently large. We show that Löwdin's canonical orthogonalization method can successfully overcome such problem and simultaneously reduce the dimension of basis set. This is illustrated first through an S‐wave model He atom, and then the real two‐electron atoms in both the ground and excited states. In all of these calculations, the variational bound state energies of the two‐electron systems are obtained in reasonably high accuracy using over‐redundant STO‐CI bases, however, without using extended high‐precision technique. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Extant analytic methods for evaluating two‐center electron repulsion integrals in a Slater‐type orbital (STO) basis using ellipsoidal coordinates and the Neumann expansion of 1/r12 have problems of numerical stability that are analyzed in detail using computer‐assisted algebraic techniques. Some of these problems can be eliminated by use of procedures known in this field 40 years ago but seemingly forgotten now. Others can be removed by use of a formulation suitable for small values of the STO screening parameter. A recent attempt at such a formulation is corrected and extended in a way permitting its practical use. The main functions encountered in the integrations over the ellipsoidal coordinate of the range 1 … ∞ are Bessel functions or generalizations thereof, as pointed out here for the first time. This fact is used to motivate the derivation of recurrence relations additional to those previously known. Novel techniques were devised for using these recurrence relations, thereby providing new ways of calculating the quantities that enter the ellipsoidal expansion. The convergence rate of this expansion and the numerical characteristics of several computational strategies are reported in enough detail to identify the ranges where various schemes can be used. This information shows that recent discussions of the “convergence characteristics of [the] ellipsoidal coordinate expansion” are in fact not that, but are instead discussions of an inability to make accurate calculations of the individual terms of the expansion. It is also seen that the parameter range suitable for use of Kotani's well‐known recursive scheme is more limited than seems generally believed. The procedures discussed in this work are capable of yielding accurate two‐center electron repulsion integrals by the ellipsoidal expansion method for all reasonable STO screening parameters, and have been implemented in illustrative public‐domain computer programs. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

11.
Consistent basis sets of triple‐zeta valence with polarization quality for main group elements and transition metals from row one to three have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are based on the def2‐TZVP basis sets developed for molecules by the Ahlrichs group. Orbital exponents and contraction coefficients have been modified and reoptimized, to provide robust and stable self‐consistant field (SCF) convergence for a wide range of different compounds. We compare results on crystal structures, cohesive energies, and solid‐state reaction enthalpies with the modified basis sets, denoted as pob‐TZVP, with selected standard basis sets available from the CRYSTAL basis set database. The average deviation of calculated lattice parameters obtained with a selected density functional, the hybrid method PW1PW, from experimental reference is smaller with pob‐TZVP than with standard basis sets, in particular for metallic systems. The effects of basis set expansion by diffuse and polarization functions were investigated for selected systems. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Basis set effects on the DSD‐PBEP86‐NL and DOD‐PBEP86‐NL functionals for noncovalent interactions have been extensively studied in this work. The cc‐pVXZ (X = D, T, Q, 5, 6) and augmented aug‐cc‐pVXZ (X = D, T, Q) basis sets are systematically tested without counterpoise (CP) corrections against the well‐known S66 database. Additionally, the basis sets of def2‐TZVPP and def2‐TZVPPD are also examined. Based on our computations, the performances of the aug‐cc‐pVQZ, cc‐pV5Z, and cc‐pV6Z basis sets are very approximate to those obtained with the def2‐QZVP basis set for both the DSD‐PBEP86‐NL and DOD‐PBEP86‐NL functionals. Note that the short‐range attenuation parameters for these two functionals were directly optimized using the def2‐QZVP basis set without CP corrections against the S66 database. Generally speaking, the cc‐pVXZ (X = D, T, Q), aug‐cc‐pVXZ (X = D, T, Q), def2‐TZVPP, and def2‐TZVPPD basis sets favor half CP correction for these two functionals. Nevertheless, the aug‐cc‐pVQZ basis set already performs well without any CP correction, especially for the DOD‐PBEP86‐NL functional. With respect to accuracy and computational cost, the cc‐pVTZ and def2‐TZVPP basis sets with half CP corrections are recommended for these two functionals to evaluate interaction energies of large noncovalent complexes.  相似文献   

13.
One‐electron integrals over three centers and two‐electron integrals over two centers, involving Slater‐type orbitals (STOs), can be evaluated using either an infinite expansion for 1/r12 within an ellipsoidal‐coordinate system or by employing a one‐center expansion in spherical‐harmonic and zeta‐function products. It is shown that the convergence characteristics of both methods are complimentary and that they must both be used if STOs are to be used as basis functions in ab initio calculations. To date, reports dealing with STO integration strategies have dealt exclusively with one method or the other. While the ellipsoidal method is faster, it does not always converge to a satisfactory degree of precision. The zeta‐function method, however, offers reliability at the expense of speed. Both procedures are described and the results of some sample calculation presented. Possible applications for the procedures are also discussed. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 1–13, 1999  相似文献   

14.
The molecular electrostatic potential (MEP) of the indole molecule was calculated in a three‐dimensional grid in which the molecule was centered at the origin. To evaluate the dependence of MEP on the type of calculation, semiempirical, ab initio, and density functional theory methods with different basis sets were employed. The data matrix generated by these calculations was analyzed by principal component analysis (PCA). The appearance of outliers and the effect of wavefunction modifications such as the introduction of electron correlations and diffuse functions were highlighted by the use of PCA. The spatial localization of such effects around the molecule was possible from the loadings values associated with the graphical analysis of the grid points. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

15.
16.
A recently proposed perturbational approach to the electron correlation cusp problem 1 is tested in the context of three spherically symmetrical two‐electron systems: helium atom, hydride anion, and a solvable model system. The interelectronic interaction is partitioned into long‐ and short‐range components. The long‐range interaction, lacking the singularities responsible for the electron correlation cusp, is included in the reference Hamiltonian. Accelerated convergence of orbital‐based methods for this smooth reference Hamiltonian is shown by a detailed partial wave analysis. Contracted orbital basis sets constructed from atomic natural orbitals are shown to be significantly better for the new Hamiltonian than standard basis sets of the same size. The short‐range component becomes the perturbation. The low‐order perturbation equations are solved variationally using basis sets of correlated Gaussian geminals. Variational energies and low‐order perturbation wave functions for the model system are shown to be in excellent agreement with highly accurate numerical solutions for that system. Approximations of the reference wave functions, described by fewer basis functions, are tested for use in the perturbation equations and shown to provide significant computational advantages with tolerable loss of accuracy. Lower bounds for the radius of convergence of the resulting perturbation expansions are estimated. The proposed method is capable of achieving sub‐μHartree accuracy for all systems considered here. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

17.
The correlation calculation of the electronic structure of PbH is carried out with the generalized relativistic effective core potential (GRECP) and multireference single‐ and double‐excitation configuration interaction (MRD‐CI) methods. The 22‐electron GRECP for Pb is used and the outer core 5s, 5p, and 5d pseudospinors are frozen using the level‐shift technique, so only five external electrons of PbH are correlated. A new configuration selection scheme with respect to the relativistic multireference states is employed in the framework of the MRD‐CI method. The [6, 4, 3, 2] correlation spin–orbit basis set is optimized in the coupled cluster calculations on the Pb atom using a recently proposed procedure, in which functions in the spin–orbital basis set are generated from calculations of different ionic states of the Pb atom and those functions are considered optimal that provide the stationary point for some energy functional. Spectroscopic constants for the two lowest‐lying electronic states of PbH (2Π1/2, 2Π3/2) are found to be in good agreement with the experimental data. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

18.
We present a new implementation of a recent open‐ended response theory formulation for time‐ and perturbation‐dependent basis sets (Thorvaldsen et al., J. Chem. Phys. 2008, 129, 214108) at the Hartree–Fock and density functional levels of theory. A novel feature of the new implementation is the use of recursive programming techniques, making it possible to write highly compact code for the analytic calculation of any response property at any valid choice of rule for the order of perturbation at which to include perturbed density matrices. The formalism is expressed in terms of the density matrix in the atomic orbital basis, allowing the recursive scheme presented here to be used in linear‐scaling formulations of response theory as well as with two‐ and four‐component relativistic wave functions. To demonstrate the new code, we present calculations of the third geometrical derivatives of the frequency‐dependent second hyperpolarizability for HSOH at the Hartree–Fock level of theory, a seventh‐order energy derivative involving basis sets that are both time and perturbation dependent. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
We introduce a new type of spatially restricted basis function (zero beyond a characteristic r0 value of the radial coordinate) that makes it possible to obtain, in nonconfined systems, similar results to STO functions. This is important because the use of this kind of functions enables the exact application a sort of zero differential overlap approximation to calculate properties of large systems. Our functions are a modification of the BO‐xZ box orbitals introduced by Lepetit et al. First, we replaced these orbitals by a function that is easier to obtain and generalize, that we named “simplified box orbital” (SBO), and we have shown some advantages of the SBO over BO and standard STO functions. Second, we obtained Gaussian developments for both the original BO orbitals and the new SBO orbitals. In this way, it becomes possible to manage our SBO orbitals with standard quantum chemistry software like GAUSSIAN or similar programs. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Structural properties and energetics for the optimized carbon monoxide cyclic oligomers are analyzed at the correlated ab initio second‐order Møller–Plesset (MP2) and density functional methods (B3LYP and mPW1PW), using Dunning's cc‐pVXZ (X = D, T, Q) basis set, augmented with diffuse functions. Many‐body interactions of the stable carbon monoxide cyclic oligomers, (CO)4 and (CO)5 are computed at the MP2/aug‐cc‐pVTZ level. Contributions of two‐ to five‐body terms to each of these oligomers for their interaction energies, including corrections for basis set superposition error (BSSE) are investigated by using function counterpoise and its generalized version. It has been found that three‐body terms are attractive in nature and essential in order to describe the cooperative effects in the stable cyclic CO oligomers. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号