首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
A single-laboratory validation study was conducted for a liquid chromatographic/mass spectrometric (LCIMS) method for the simultaneous determination of the free carnitine and total choline in milk-based infant formula and health-care products. The sample preparation used for both carnitine and choline was adapted from AOAC Official Method 999.14, with an acidic and enzymatic hydrolysis of esterified forms of choline. Carnitine and choline were quantified by ion-pair chromatography with single-quadrupole MS detection, using their respective deuterated internal standards. The repeatability relative standard deviation was < or =2.5 and 2.1%, respectively, for carnitine and choline. The intermediate reproducibility relative standard deviation was <4.7 and 2.4%, respectively, for carnitine and choline. The ranges of the average product-specific recoveries were 92-98 and 94-103%, respectively, for carnitine and choline. Choline concentration determined in infant formula reference material SRM 1846 was in agreement with the reference value. The proposed method was compared with the enzymatic methods for a range of products; good correlation (r = 0.99) was obtained, although a significant bias was observed for both analytes. The method, with a short chromatographic run time (7 min), is convenient for routine analysis to enhance analytical throughput and is a good alternative to enzymatic assays.  相似文献   

2.
A simple method for the determination of betaine, l ‐carnitine, and choline in human urine was developed based on column‐switching ion chromatography coupled with nonsuppressed conductivity detection by using a self‐packed column. A pretreatment column (50 mm × 4.6 mm, id) packed with poly(glycidyl methacrylate‐divinylbenzene) microspheres was used for the extraction and cleanup of analytes. Chromatographic separation was achieved within 10 min on a cationic exchange column (150 mm × 4.6 mm, id) using maleic anhydride modified poly(glycidyl methacrylate‐divinylbenzene) as the particles for packing. The detection was performed by ion chromatography with nonsuppressed conductivity detection. Parameters including column‐switching time, eluent type, flow rates of eluent, and interfering effects were optimized. Linearity (r 2 ≥ 0.99) was obtained for the concentration range of 0.50–100, 0.75–100, and 0.25–100 μg/mL for betaine, l ‐carnitine, and choline, respectively. Detection limits were 0.12, 0.20, and 0.05 μg/mL for betaine, l ‐carnitine, and choline, respectively. The intra‐ and interday accuracy and precision for all quality controls were within ±10.11%. Satisfactory recovery was observed between 92.5 and 105.0%. The validated method was successfully applied for the determination of betaine, l ‐carnitine, and choline in urine samples from healthy people.  相似文献   

3.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

4.
Choline fenofibrate is the choline salt of fenofibric acid, which releases free fenofibric acid in the gastrointestinal tract. To estimate the absolute oral bioavailability of fenofibric acid and choline fenofibrate, a novel and sensitive UPLC–MS/MS method with liquid–liquid extraction procedure was developed for the determination of fenofibric acid in rat plasma. The separation was achieved on a Phenomenex Kinetex C18 column (50 × 2.1 mm, 2.6 μm) containing 2 mm ammonium acetate–methanol with a gradient elution program. Validations of this method including specificity, sensitivity (limit of quantification, 5 ng/mL), linearity (0.005–10 μg/mL), accuracy (within ±4.3%), precision (intra‐ and inter‐day coefficient of variation <11.3%), recovery (94.9–105.2% for fenofibric acid), matrix effect, stability and dilution, were all within acceptable limits. This method successfully supported the determination of fenofibric acid and choline fenofibrate. The absolute oral bioavailability was 93.4% for choline fenofibrate and 40.0% for fenofibric acid. These results suggested that choline fenofibrate and fenofibric acid had a better in vivo pharmacokinetic behavior than that of fenofibrate. The two new orally administrated pharmaceuticals, fenofibric acid and choline fenofibrate, can be developed as alternatives to fenofibrate.  相似文献   

5.
A capillary electrophoresis (CE) method coupled to electrospray ionization ion trap tandem mass spectrometry (ESI-IT-MS/MS) is described for the rapid analysis of carnitine, acetylcarnitine, and propionylcarnitine in human plasma. Optimization of the procedure was achieved by a reduced sample pretreatment and after examining several physicochemical parameters that influence both the CE separation and the MS analytes detection. The analysis of total carnitine in human plasma after hydrolysis of short-chain metabolites is also shown. The analysis of carnitine and metabolites was obtained in less than 10 min using a 200 mM ammonium formate buffer, pH 2.5, with high sensitivity and specificity using the MS detection in product ion scan mode. The method was tested for quantitative recovery using dialyzed human plasma as matrix and showed linearity in the concentrations ranges 20–160, 1–32, and 0.25–8 μM for carnitine, acetylcarnitine, and propionylcarnitine with (squared) correlation coefficients of 0.9984, 0.9995, and 0.9991, respectively. The intraday and intermediate analysis repeatability and accuracy are within 15% of relative standard deviation (RSD) at low, medium, and high concentration and within/or slight exceeding 20% at the lower limit of quantitation (LLOQ). The method is sensitive for determining carnitine and its metabolites in human plasma with high specificity.  相似文献   

6.
The identification of impurities in l‐ carnitine by mass spectrometry is difficult because derivative reagents or ion pair reagents are usually used to separate and increase the retention of l‐ carnitine on the reversed‐phase column. In this study, four impurities including 3‐chloro‐2‐hydroxy‐N,N,N‐trimethylpropan‐1‐aminium, 3‐cyano‐2‐hydroxy‐N,N,N‐trimethylpropan‐1‐aminium, 3‐carboxy‐N,N,N‐trimethylprop‐2‐en‐1‐aminium, and 4‐chloro‐2,3,4‐trihydroxy‐N,N,N‐trimethylbutan‐1‐aminium were identified in l‐ carnitine and its tablets by using two‐dimensional column‐switching high‐performance liquid chromatography coupled with linear ion trap mass spectrometry. The first column was a C8 column at a flow rate of 0.15 mL/min; the detection wavelength was 220 nm. The second column was an Acclaim Q1 column using a gradient elution program with aqueous 30 mM ammonium acetate (pH 5.0) and acetonitrile as the mobile phase at a flow rate of 0.5 mL/min. The mass fragmentation patterns and structural assignments of impurities were studied, and the quantitative validation of three impurities was further investigated. The linearity (r 2) was found to be >0.99, with ranges from 0.2 to 50 ng/mL and 0.1 to 10 ng/mL. The method was used successfully for determination of impurities in five samples of l‐ carnitine and tablets.  相似文献   

7.
A reversed-phase liquid chromatographic/tandem mass spectrometric method was developed and validated for the determination of free carnitine (FC) and total carnitine (TC) in infant formula and raw ingredients. Preparation of samples for FC determination required only nonvolumetric dilution in water, followed by filtration. Determination of TC in whey-based samples required a common saponification procedure, which hydrolyzed the acylcarnitines to FC. L-Carnitine standards were prepared in water at 3 concentrations (7.5, 30, and 60 ng/mL). L-Carnitine-d3 was incorporated in the sample and standard preparations as a stable isotope internal standard (ISTD), which helped to normalize signal suppression due to fouling of the ionization source, or matrix effects. A short C8 column (50 x 2.1 mm id) was used for liquid chromatography, with mobile phases consisting of 0.1% heptafluorobutyric acid in water and methanol. L-Carnitine and the ISTD eluted at about 2 min, and the injection-to-injection cycle time was about 11 min. Multiple-reaction monitoring was used for quantitation by monitoring the ion transitions m/z 162 > 103 and 162 > 85 for L-carnitine, and m/z 165 > 103 and 165 > 85 for the ISTD. The values for overall method precision for a whey-based infant formula, a protein hydrolyzate infant formula, and a water-soluble vitamin/amino acid premix were relative standard deviations of 1.32, 1.86, and 3.33%, respectively. The overall mean recoveries were between 97.3 and 102.8%. Additionally, the method results showed good correlation with those obtained for a radioenzymatic assay done in-house.  相似文献   

8.
l ‐tetrahydropalmatine (l ‐THP) is a tetrahydroprotoberberine isoquinoline alkaloid that has been used as an analgesic agent in China for more than 40 years. Recent studies indicated its potential application in the treatment of drug addiction. In this study, a sensitive and rapid method using ultra high performance liquid chromatography with MS/MS was developed and validated for simultaneous quantitation of l ‐THP and its desmethyl metabolites. Enzymatic hydrolysis was integrated into sample preparation to enable the quantitative determination of both free and conjugated metabolites. Chromatographic separation was achieved on an Agilent Poroshell 120 EC‐C18 column. Detection was performed by MS in the positive ion ESI mode. The calibration curves of the analytes were linear (r2 > 0.9936) over the concentration range of 1–1000 ng/mL with the lower limit of quantification at 1 ng/mL. The precision for both intra‐ and interday determinations was <8.97%, and the accuracy ranged from ?8.74 to 8.65%. The recovery for all the analytes was >70% without significant matrix effect. The method has been successfully applied to the urinary excretion study of l ‐THP in rats. The conjugates were found to be the major urine metabolites of the drug.  相似文献   

9.
Choline is a water-soluble nutrient important for infants' brain and neural development. In infant formulas, choline is one of the important fortified nutrients. A single-laboratory validation study conducted an LC-electrospray ionization-MS/MS to determine total choline in infant formulas. Sample preparation was adopted from AOAC Official Method 999.14, and instrumental running conditions were optimized. The LOQ was 0.2 microg/100 g, which is significant for measuring total choline in infant formulas. Average recoveries for milk-, rice-, soybean-, and hydrolyzed protein-based samples ranged from 86.45 +/- 6.04% to 108.98 +/- 3.68%, with RSD less than 7%. The repeatability RSD (RSD(r)) range was 0.24-3.59% in within-day evaluation and 1.16-3.24% in day-to-day evaluation. Matrix effect was also investigated, and can be effectively eliminated by using an internal standard. Therefore, this method has high credibility, and could be used as a routine method of quality control, or for clinical studies and other research areas.  相似文献   

10.
A novel method for the simultaneous quantification of Vitamins A, D3 and E in fortified infant formulae has been developed using isocratic normal-phase liquid chromatography with positive atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). Food products were saponified and the vitamins were extracted by solid-phase extraction (SPE) on a Chromabond XTR cartridge. Quantification of Vitamins D3 and E were performed with Vitamin D2 and 5,7-dimethyltocol (DMT) as internal standards (IS), respectively while no IS was used for Vitamin A. Detection of the vitamins was made in the selected ion monitoring (SIM) mode. MS calibration curves were linear between 0.15 and 12 mg/l for Vitamin A, 5-400 microg/l for Vitamin D3 and 0.25-20 mg/l for Vitamin E with regression coefficient r2 > 0.996 and the limits of detection were below 1.4 ng. The repeatability (CV) obtained on a reference dietetic infant formula was 2.3% for Vitamin A, 2.6% for Vitamin E and 5.9% for Vitamin D3. The between-day variations (CV) over 6 days were in the ranges of 2.4-6.9% for the three vitamins. The mean recoveries from a reference infant formula spiked with all three vitamins ranged from 96 to 105% with a relative standard error less than 9%. The applicability of the method was demonstrated by analyzing a set of infant formula and infant cereals; similar results were obtained with the LC-MS method and reference HPLC methods.  相似文献   

11.
 The separation of carnitine, acetylcarnitine and palmitoylcarnitine as ADAM (9-anthryldiazo-methane) derivatives was performed using capillary electrophoresis. A buffer system with 90% methanol and various amounts of phosphoric acid and micelle forming SDS was optimized with respect to the best resolution of the carnitine derivatives. A detection limit of 10 μmol/l or 32 ng carnitine was determined by laser induced fluorescence detection. Under optimized conditions low carnitine contents in acylcarnitine standards have been determined. Received: 30 May 1996/Accepted: 17 June 1996  相似文献   

12.
 The separation of carnitine, acetylcarnitine and palmitoylcarnitine as ADAM (9-anthryldiazo-methane) derivatives was performed using capillary electrophoresis. A buffer system with 90% methanol and various amounts of phosphoric acid and micelle forming SDS was optimized with respect to the best resolution of the carnitine derivatives. A detection limit of 10 μmol/l or 32 ng carnitine was determined by laser induced fluorescence detection. Under optimized conditions low carnitine contents in acylcarnitine standards have been determined. Received: 30 May 1996/Accepted: 17 June 1996  相似文献   

13.
Lactic acid and 2‐hydroxyglutaric acid are chiral metabolites that have two distinct d‐ and l ‐enantiomers with distinct biochemical properties. Perturbations of a single enantiomeric form have been found to be closely related to certain diseases. Therefore, the ability to differentiate the d and l enantiomers is important for these disease studies. Herein, we describe a method for the separation and determination of lactic acid and 2‐hydroxyglutaric acid enantiomers by chiral derivatization (with l‐ menthol and acetyl chloride) combined with gas chromatography and mass spectrometry. The two pairs of above‐mentioned enantiomers exhibited linear calibration curves with a correlation coefficient (R2) exceeding 0.99. The measured data were accurate in the acceptable recovery range of 88.17–102.30% with inter‐ and intraday precisions (relative standard deviations) in the range of 4.23–17.26%. The limits of detection for d‐ lactic acid, l‐ lactic acid, d‐ 2‐hydroxyglutaric acid, and l‐ 2‐hydroxyglutaric acid were 0.13, 0.11, 1.12, and 1.16 μM, respectively. This method was successfully applied to analyze mouse plasma. The d‐ lactic acid levels in type 2 diabetes mellitus mouse plasma were observed to be significantly higher (P < 0.05, t‐test) than those of normal mice, suggesting that d‐ lactic acid may serve as an indicator for type 2 diabetes mellitus.  相似文献   

14.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

15.
A simple and highly sensitive CE–UV method was applied in the determination of l ‐ctrulline, which was developed from an oral formulation for pediatric use. The novel method was based on the analysis of l ‐citrulline for direct ultraviolet detection at 198 nm. The BGE consisted of 10 mM sodium tetraborate and 50 mM SDS at pH 9, and the electrophoretic parameters were optimized. The method was validated in terms of specificity, linearity, LOD, LOQ, precision, accuracy, and robustness. The LOD and LOQ obtained were 1.36 and 4.54 μg/mL, respectively. In addition, the method offers higher sensitivity and specificity compared with the results obtained from HPLC method using UV‐detectors, in which l‐ citrulline needs to be derivatizated. Furthermore, low cost and simplicity of the system allowed the rapid and simple quantitation of l‐ citrulline in the oral formulation for quality control and stability indicated method.  相似文献   

16.
A new chiral analytical method based on CE‐MS is proposed for the identification and simultaneous quantification of D /L ‐carnitine in infant formulas. Previous derivatization of carnitine with FMOC enabled the optimization of the chiral separation using CE with UV detection. An optimization of electrospray‐MS parameters using a partial filling of the non‐volatile chiral selector (succinyl‐γ‐CD) was performed. A selective fragmentation using MS2 experiments with an ion trap analyser was carried out to confirm the identity of D /L ‐carnitine according to the current legislation. Satisfactory results were obtained in terms of linearity, precision, and accuracy. Interestingly, the CE‐MS2 method developed allowed a sensitivity enhancement with respect to UV detection of 100‐fold, obtaining an LOD of 100 ng/g for D ‐carnitine. The determination of L ‐carnitine and its enantiomeric purity in 14 infant formulas supplemented with carnitine was successfully achieved, sample preparation only requiring an ultrafiltration with centrifugal filter devices to retain the components with the highest molecular weights.  相似文献   

17.
建立了一种同时测定婴幼儿配方乳粉中4种可选择成分(胆碱、左旋肉碱、牛磺酸和肌醇)的高效液相色谱-串联三重四极杆质谱(HPLC-MS/MS)分析方法。样品经温水溶解后用亚铁氰化钾和乙酸锌沉淀蛋白,上清液过滤后采用HSS T3色谱柱分离,三重四极杆质谱仪检测,胆碱和左旋肉碱使用内标法定量,牛磺酸和肌醇使用外标法定量。在最优化条件下,胆碱和左旋肉碱在0.01~2.0 mg/L范围内,牛磺酸和肌醇在0.1~2.0 mg/L范围内呈良好的线性关系,相关系数均大于0.997;胆碱和左旋肉碱的检出限均为1.5 mg/kg,牛磺酸和肌醇的检出限均为15 mg/kg。4种化合物的回收率为87.5%~102.4%,相对标准偏差(RSD,n=6)为3.0%~7.3%。该方法灵敏度高、净化效果好、定量准确,适用于婴幼儿配方乳粉中胆碱、左旋肉碱、牛磺酸和肌醇的同时快速检测。  相似文献   

18.
A selective and low organic‐solvent‐consuming method of sample preparation combined with high‐performance liquid chromatography and tandem mass spectrometry is introduced for phthalate sum analysis in farmland soil. Sample treatment involves a one‐step hydrolysis of phthalates using methanol and alkaline and tetrabutylammonium bromide for 20 min at 80℃. Then, the resulting phthalic acid in the acidified hydrolysate is extracted using an octanol‐based supramolecular solvent without purification. Under optimized conditions, the correlation coefficients were 0.992–0.999 and standard errors (Sy/x) were 0.018–0.138 for calibration curves within the range of 50–2000 ng/mL. No obvious matrix effect occurred between the pure supramolecular solvent and soil extract. The recovery rates ranged from 91 to 107% with the relative standard deviation ranging from 0.5–7.3%. Intra‐ and interday repeatability, expressed as relative standard deviation, was less than 8.0 and 11.0%, respectively. The detected limit was 2.49 nmol/g, and the quantification limit was 3.64 nmol/g. Fifteen soil samples were analysed, and the background corrected phthalate sum ranged from 1.44 to 120 nmol/g.  相似文献   

19.
AOAC Official Method 999.14 is applicable for the determination of choline in milk and infant formulas. To date, its use has not been extended beyond these matrixes. We modified Official Method 999.14 and applied it to the determination of choline in a range of choline-containing dietary supplements. Dietary supplement tablets, capsules, wafers, softgels, liquid products, and drink powders were included. We found that the standard curve could be extended to cover a wider range of choline concentrations and defined a procedure for the use of Norit for samples in which the vitamin C content was high enough to interfere with the analysis. Recoveries of choline added to infant formula powders and to representative dietary supplement tablets, capsules, powdered drink mix, and wafer products were 85-114%. The use of Norit during the procedure did not affect the recovery of choline added to infant formula powders or to dietary supplements. An alkaline digestion was included for use with a product containing lecithin as the sole source of choline. Ten of 11 dietary supplement products analyzed by the modified method contained amounts of choline at or above declarations found on the product labels. The remaining product contained about 40% of the label-declared amount of choline.  相似文献   

20.
A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号