首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy for the synthesis of end‐functionalized polyisobutylene (PIB) oligomers is detailed. Commercially available vinyl‐terminated PIB oligomers were modified to form aniline‐terminated PIB via an aromatic electrophilic substitution reaction. The PIB‐bound aryl amines so formed were then converted into diazonium salts using isopentyl nitrite and an acid in methylene chloride. These salts served as versatile intermediates in synthetic reactions affording azo dye‐containing PIB derivatives and other terminally‐functionalized PIB derivatives not readily available by other reactions. The advantages and limitations of various name reactions including diazo couplings, Sandmeyer reactions, dediazoniations, and Heck reactions are discussed. The kinetics of polar substitution reactions at the termini of these nonpolar oligomers and the effects of solvent on these reactions were also examined. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The synthesis of polyvalent functionalized polyisobutylene (PIB) oligomers containing multiple polar groups via radical polymerization is described. Polymerizations from PIB macroinitiators via alkylborane intermediates can form block copolymers but the polar block is consistently larger than the PIB block and unless a hydrophobic monomer is used, the products are insoluble in alkanes. Block copolymer products from ATRP macroinitiators are formed with more control over the degree of polymerization of a polar block from a 1000 Da PIB starting material but are still alkane insoluble because the degree of polymerization of the polar block was consistently equal to or greater than the degree of polymerization of the PIB block. RAFT polymerization using 5 mol % of azoisobutyronitrile relative to a PIB macroinitiator however was successful in producing acceptable yields of alkane soluble block copolymers using a 1000 Da PIB starting material and monomers like methyl methacrylacrylate, ethyl methacrylate, N,N‐dimethylacrylamide, and N‐isopropylacrylamide. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1860–1867  相似文献   

3.
tert-Chloride-terminated polyisobutylenes (PIB) (1020 ≤ Mn ≤ 6700 g/mol) were dehydrochlorinated nonregiospecifically using basic alumina, or regiospecifically either via potassium tert-butoxide or in situ quenching of quasiliving PIB. Olefin-terminated PIBs were quantitatively ozonized at −78 °C using hexane/methylene chloride/methanol, 62/31/7 (v/v/v) cosolvents, and an ozone generator, employing pure oxygen as source gas. The primary ozonides were reduced using trimethyl phosphite to yield pure PIB methyl ketone from exo-olefin PIB, and a mixture of PIB methyl ketone and PIB aldehyde from mixed olefin-PIB. PIB methyl ketone was oxidized to carboxylate via the haloform reaction; titration revealed near-quantitative functionalization, but the reaction was slow. Tetrahalomethane oxidation was identified as a preferred alternative method, and was conducted using either CCl4 as the reaction solvent, THF as the solvent with CCl4 in reagent amounts, or hexane as the solvent with a phase-transfer catalyst and CCl4 in reagent amounts. The system using hexane, with tetra-n-butyl ammonium chloride as phase-transfer catalyst, showed complete conversion in ∼ 4 h. PIB carboxylic acid was recovered by acidification and isolation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3229–3240, 2008  相似文献   

4.
The controlled cationic polymerization of isobutylene (IB) initiated by H2O as initiator and TiCl4 as coinitiator was carried out in n‐Hexane/CH2Cl2 (60/40, v/v) mixture at −40 °C in the presence of N,N‐dimethylacetamide (DMA). Polyisobutylene (PIB) with nearly theoretical molecular weight (Mn = 1.0 × 104 g/mol), polydispersity (Mw/Mn) of 1.5 and high content (87.3%) of reactive end groups (tert‐Chlorine and α‐double bond) was obtained. The Friedel‐Crafts alkylation of triphenylamine (TPA) with the above reactive PIB was further conducted at different reactions, such as [TPA]/[PIB], solvent polarity, alkylation temperature, and time. The resultant PIBs with arylamino terminal group were characterized by 1H NMR, UV, and GPC with RI/UV dual detectors. The experimental results indicate that alkylation efficiency (Aeff) increased with increases in [TPA]/[PIB], reaction temperature, and reaction time and with a decrease in solvent polarity. The alkylation efficiency could reach 81.0% at 60/40(v/v) mixture of n‐Hex/CH2Cl2 with [TPA]/[PIB] of 4.49 at 50 °C for 54 h. Interestingly, the synthesis of PIB with arylamino terminal group could also be achieved in one pot by combination of the cationic polymerization of IB initiated by H2O/TiCl4/DMA system with the successive alkylation by further introduction of TPA. Mono‐, di‐ or tri‐alkylation occurred experimentally with different molar ratio of [TPA]/[PIB]. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 936–946, 2008  相似文献   

5.
Metallophthalocyanines prepared with polyisobutyl (PIB) substituents have very high solubility in organic solvents including saturated hydrocarbons, toluene, and other low polarity organic solvents. In heptane, PIB‐bound metallophthalocyanines have solubility of about 0.1 g/mL at 25 °C, solubility values that are significantly higher than other substituted metallophthalocyanines. PIB terminally functionalized with metallophthalocyanines as well as PIB containing terminal azo dye groups also dissolve in molten hydrocarbon polymers like polyethylene or polypropylene. Thus, these highly chromogenic PIB‐bound dyes can be incorporated uniformly into the polyolefins to form colored polymer solids on cooling. Because only a low concentration of a highly hydrocarbon compatible dye is used, the crystallinity and thermal properties of the colored polyolefin products are not significantly affected. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 545–551  相似文献   

6.
A new two‐step synthesis of polyisobutylene (PIB) with precisely one thymine functionality per chain (PIB‐T) is reported. The primary hydroxyl‐functionalized PIB (PIB‐OH) precursor was prepared by direct functionalization via living carbocationic polymerization of isobutylene initiated by the α‐methylstyrene epoxide/TiCl4 system. Matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐ToF MS) of a low molecular weight PIB‐OH precursor demonstrated the effectiveness of direct functionalization by this method. A PIB‐acrylate precursor (PIB‐Ac) was obtained from such a PIB‐OH, and the PIB‐T was subsequently prepared by Michael addition of thymine across the acrylate double bond. MALDI‐ToF MS of the products verified that all polymer chains carried precisely one thymine group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3501–3506, 2010  相似文献   

7.
Amphiphilic polymer networks consisting of hydrophilic poly(2‐hydroxyethyl methacrylate) (PHEMA) and hydrophobic polyisobutylene (PIB) chains were synthesized from a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) prepared at ?50 °C in dichloromethane in conjunction with SnCl4. The isocyanate groups of this random copolymer, PIB(NCO)n, were subsequently transformed in situ to methacrylate (MA) groups in the dibutyltin dilaurate‐catalyzed reaction with 2‐hydroxyethyl methacrylate (HEMA) at 30 °C. The resulting PIB(MA)n with number–average molecular weight 8200 and average functionality Fn ~ 4 per chain was in situ copolymerized radically with HEMA at 70 °C, giving rise to the amphiphilic networks containing 41 and 67 mol % HEMA. PHEMA–PIB network containing 43 mol % HEMA was also prepared by radical copolymerization of PIB(MA)n precursor with HEMA using sequential synthesis. An amphiphilic nature of the resulting networks was proved by swelling in both water and n‐heptane. PIB(NCO)n and PIB(MA)n were characterized by FTIR spectroscopy, SEC and the latter also by 1H NMR spectroscopy. Solid state 13C NMR spectroscopy was used for characterization of the resulting PHEMA–PIB networks. Whereas single glass‐transition temperature, Tg = ?67.4 °C, was observed for the rubbery crosslinked PIB prepared by reaction of PIB(NCO)n with water, the PHEMA–PIB networks containing 67 and 41 mol % HEMA showed two Tg's: ?70.4 and 102.7 °C, and ?63 and 107.2 °C, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2891–2900, 2006  相似文献   

8.
1-Chloro-1-phenylethyl-telechelic polyisobutylene (PIB) was synthesized by living carbocationic polymerization (LCCP). LCCP of isobutylene was induced by a difunctional initiator in conjunction with TiCl4 as coinitiator in the presence of N,N-dimethylacetamide in CH2Cl2/hexane (40:60 v/v) solvent mixture at −78°C. After complete isobutylene conversion a small amount of styrene was added leading to a rapid crossover reaction and thus to the attachment of short outer polystyrene (PSt) blocks to the PIB segment. Quenching the living polymerization of styrene yielded 1-chloro-1-phenylethyl terminal groups. The resulting telechelic polymer (Cl-PSt-PIB-PSt-Cl) is a potential new macroinitiator for atom transfer radical polymerization of a variety of vinyl monomers.  相似文献   

9.
This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [Ph? C(CH3)(CH2OH)–PIB–CH2? C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the α‐methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ?75 to ?50 °C (198–223 K). Low molecular weight samples (number‐average molecular weight ~ 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2‐phenyl‐1‐propanol calibration and 1H NMR performed on both the hydroxyl‐functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005–1015, 2002  相似文献   

10.
Allyl telechelic polyisobutylene (allyl‐PIB‐allyl) is of great commercial and scientific interest produced by living polymerization of isobutylene followed by functionalization (allylation with allyltrimethylsilane) under external cooling, typically to ?78 °C. Cooling is cumbersome and costly, and temperature control is far from ideal. Herein we describe the quantitative preparation of allyl‐PIB‐allyl under ideal internal temperature control at ~?40 °C using refluxing propane/methyl chloride mixtures. The exact composition of the nonpolar/polar solvents and polymerization time crucially affect product quality. Well‐defined allyl‐PIB‐allyl is obtained using 60/40 (v/v) refluxing propane/methyl chloride and terminating not more than 5 min after monomer depletion. In pure refluxing propane or methyl chloride, or at longer reaction times, byproducts form that compromise product quality. A mechanism is presented to explain the observations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1784–1789  相似文献   

11.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

12.
The synthesis of a monoacrylate functionalized poly(isobutylene) (PIB) macromonomer (PIBA) has been achieved by a two‐step reaction starting from a commercially available PIB. Firstly, terminal olefins (vinylidene and trisubstituted olefin) of PIB were transformed to a phenolic residue by Friedel‐Crafts alkylation followed by subsequent esterification of the phenol with acryloyl chloride, catalyzed by triethylamine. PIBA structure was confirmed by 1H‐NMR, 13C‐NMR and GPC before utilizing in the RAFT copolymerization with N,N‐dimethylacrylamide (DMA) to obtain statistical copolymers (P[(DMA‐co‐(PIBA)]). Monomer conversions were consistently higher than 85% for both DMA and PIBA as monomer feed composition was varied. Chain extension of poly(N,N‐dimethylacrylamide) with PIBA to synthesize block copolymers (P[(DMA‐b‐(PIBA)]) was also achieved with near quantitative monomer conversions (>97%). Block formation efficiency was not quantitative but purification of block copolymers was possible by selective precipitation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 634–643  相似文献   

13.
Polyisobutylene‐based UV cured networks potentially useful as sealants were synthesized by photopolymerization of well‐defined polyisobutylene methacrylate (PIB‐MA), acrylate (PIB‐A) and vinyl ether (PIB‐VE) di‐ and trifunctional macromonomers. The kinetics of photocrosslinking were measured using an optical pyrometer apparatus and optimized with respect to different experimental parameters. PIB‐MA/A macromonomers displayed enhanced reactivity in radical photopolymerization in the presence of a bis(acylphosphine) oxide photoinitator. PIB‐VE macromonomers exhibited a high rates of photopolymerization with (4‐n‐octyloxyphenyl)phenyliodonium hexafluroantimonate as the photoinitiator. The rates as well as the ultimate monomer conversions were increased by increasing the irradiation light intensity. The inherent induction period associated with oxygen inhibition in the photopolymerization of PIB‐MA was significantly reduced by optimizing the choice of photoinitiator. A detailed investigation of the concentration of MA/A/VE end groups revealed the presence of a prominent saturation effect in the photopolymerization of PIB‐A, which was absent with PIB‐MA and PIB‐VE. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
We present the synthesis of nonsymmetric α‐ω‐functionalized polyisobutylenes (PIBs) bearing different functional moieties on their chain ends. Thus, on one chain end either, a short tri‐ethylene oxide chain (TEO) or a phosphine oxide ligand is attached, whereas the other chain end is substituted by hydrogen bonding moieties (thymine/2,6‐diaminotriazine). The nonsymmetric PIBs were synthesized via living cationic polymerization using methyl‐styrene epoxide as initiator, followed by quenching reaction with 3‐bromopropyl‐benzene. Subsequent bromide/azide exchange and the use of the azide/alkyne click reaction allowed the synthesis of (a) (α)‐TEO‐(ω)‐thymine‐telechelic PIB ( 7a ), (b) (α)‐triethyleneoxide‐(ω)‐triazine telechelic PIB ( 7b ), and (c) (α)‐phosphinoxide‐(ω)‐thymine‐telechelic PIB ( 13 ) with molecular weights Mn ~ 4000 g mol?1 and low polydispersities (Mw/Mn = 1.3). The chemical identity of the final structures was proven by extensive 1H NMR investigations and matrix‐assisted laser desorption/ionization‐mass spectroscopy (MALDI). The presented method for the first time offers a simple and highly versatile approach toward supramolecular nonsymmetric α‐ω‐functionalized PIB. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Thiol‐terminated polyisobutylene (α,ω‐PIB‐SH) was synthesized from thiourea and α,ω‐bromine‐terminated PIB in a three‐step, one‐pot procedure, using a cosolvent system of 1:1 (v:v) heptane:dimethylformamide. The initial alkylisothiouronium salt was produced at 90 °C. Aqueous base hydrolysis at 110 °C resulted in thiolate chain ends, which were re‐acidified to form telechelic PIB‐SH. 1H and 13C NMR confirmed thiol functionality and complete terminal halogen conversion. Thiol‐based “click” reactions were used to demonstrate PIB‐SH utility. Alkyne‐terminated PIB was synthesized by a phosphine‐catalyzed thiol‐ene Michael addition with propargyl acrylate. Reaction of this product with 6‐mercaptohexanol produced tetrahydroxy‐functional PIB by a sequential thiol‐ene/thiol‐yne procedure. 1H NMR confirmed the structures of both products. PIB‐SH was reacted with isocyanates in the presence of base to produce polythiourethanes. A model reaction used phenyl isocyanate in THF with catalytic triethylamine. Similar conditions were used to produce PIB‐based thiourethanes with and without a small‐molecule chain extender. Increased molecular weights and thiol group conversion were observed with GPC and 1H NMR, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
In this study, the diffusion behavior of methyl ethyl ketone (MEK)/toluene mixtures, with MEK molar fractions (x1) in the liquid source lower than 0.2, in polyisobutylene (PIB) was investigated with vapor‐sorption Fourier transform infrared attenuated total reflectance (FTIR‐ATR) spectroscopy. FTIR‐ATR Fickian diffusion models for both binary and ternary systems were used to determine diffusion coefficients. Obtained diffusion coefficients for MEK from the binary diffusion model did not agree with those determined previously for the diffusion of MEK/toluene mixtures, with x1 > 0.2, in PIB. When the ternary diffusion model was used, the main‐term and cross‐term diffusion coefficients of MEK were comparable. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 908–914, 2001  相似文献   

17.
Two polyisobutylene‐grafted graphene nanocomposites were prepared by CuBr‐catalyzed atom transfer nitroxide radical coupling (ATNRC) and Cu‐catalyzed single electron transfer‐nitroxide radical coupling (SET‐NRC) chemistry under mild conditions, respectively, through the grafting‐onto strategy. Graphene oxide was first reduced to graphene by diazonium addition reaction followed by treating graphene with ethyl 2‐bromoisobutyrate for introducing Br‐containing groups onto the surface to give G‐Br. The presynthesized well‐defined functional polyisobutylene (PIB) possessing 2,2,6,6‐tetramethylpiperidine‐1‐oxyl terminal group obtained via cationic polymerization of isobutylene was then coupled with G‐Br through ATNRC or SET‐NRC at room temperature to afford polymer‐modified graphene, G‐PIB. SET‐NRC method has a faster coupling rate using cheaper reagent (Cu wire instead of CuBr) in comparison with ATNRC approach. Detailed characterizations including FT‐IR, Raman, 1H NMR, TGA, AFM, and TEM assured us of successful anchoring of PIB chains onto the surface of graphene sheets. The resulting G‐PIB nanocomposites still maintain the separated single layers in dispersion and the dispersibilities in organic solvents are significantly improved. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4505–4514  相似文献   

18.
The dynamic mechanical loss tangent (tan δ) peak of polyisobutylene (PIB) reveals an asymmetrical broad structure with a maximum on the high‐temperature side and a shoulder on the low‐temperature side. By comparing with the literature results, it is suggested that the shoulder and the maximum originate from local segmental motion and Rouse modes, respectively. Blending polystyrene (PS) with PIB has two effects on the relaxation behavior of PIB. One effect is that the maximum and the shoulder are both suppressed, but the maximum is suppressed to a higher extent. After PS forms the continuous phase, the maximum becomes lower than the shoulder, and even almost disappears when the weight ratio of PIB/PS is under 20/80. The other effect is that, before PS forms the continuous phase, the temperature position of the maximum (Ts) and that of the shoulder (Tα) remains constant, but after PS forms the continuous phase, both of them are reduced with decreasing particle size of the PIB phase, in a way similar to nano‐confinement effect on the depression of glass transition temperature. The depression amplitude of Ts is larger than that of Tα. The aforementioned two effects can be interpreted in terms of the limited expansion of free volume of the PIB phase exerted by the PS phase, which affects the maximum to a higher extent than the shoulder because Rouse modes are more sensitive to the free volume than local segments. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
MALDI‐TOF MS characterizations of dihydroxy telechelic polyisobutylene is reported. Dichloro telechelic polyisobutylene (Cl—PIB—Cl) was synthesized by means of living cationic polymerization using p‐dicumyl chloride/BCl3/DMSO initiating systems. The resulting polymer was functionalized by polymer analogous reactions to yield dihydroxy telechelic polyisobutylene (HO—PIB—OH). It was then investigated by MALDI‐TOF MS in the cation mode using 1,8‐dihidroxy‐9(10H)‐anthracenone (dithranol)/CF3COOAg matrix. The MALDI TOF MS spectra showed an increase in mass by 56 amu units attributed to the isobutylene monomer increment. The endgroups of HO—PIB—OH were determined. A good agreement was also found between the calculated isotope distributions and the isotope distributions determined by means of MALDI.  相似文献   

20.
The hydrolytic degradation of a series of poly‐L ‐lactide (PLLA)‐polyisobutylene (PIB) multiblock copolymers was studied in phosphate buffer solution (pH = 7.4) at 37 °C. The multiblock copolymers were synthesized by chain extension of PLLA‐b‐PIB‐b‐PLLA triblock copolymers, which were obtained by ring‐opening polymerization of L ‐lactide initiated by hydroxyallyl telechelic PIB. The degradation strongly depended on the PLLA segment length. At constant PIB segment length, the multiblock copolymer with the shortest PLLA segment length (DPn = 10), showed significant weight loss after 8 weeks, whereas weight loss for DPn = 36 was only observed after 24 weeks. The gel‐permeation chromatographic analysis showed a similar decrease in the number‐average molecular weight (Mn) with time further supporting the weight loss data. Dynamic mechanical analysis showed a decrease in ultimate stress and modulus with time. The crystallinity of multiblock copolymers changed significantly with degradation time as indicated from differential scanning calorimetric analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3767–3774, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号