首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microencapsulated ammonium polyphosphate (MAPP) is prepared using hydroxyl silicone oil by in situ polymerization and characterized by XPS. Microencapsulation gives MAPP better water resistance and flame retardance compared with APP in thermoplastic polyurethane (TPU). Thermal stability and fire resistance behavior have been analyzed and compared. The LOI value of the TPU/MAPP composite is higher than that of the TPU/APP composite. The UL 94 rating of the TPU/MAPP composite is V-0 at the 20 wt% additive level, whereas TPU/APP gives V-2 rating at the same loading level. The water resistant properties of the TPU composites are studied. Results of the cone calorimeter and microscale combustion calorimeter experiment show that MAPP is an effective flame retardant in TPU compared with APP.  相似文献   

2.
Two preparation techniques attempting to disperse nanoclays in high-impact polystyrene matrix yielded different clay dispersion states either as intercalated or phase-separated morphologies. By this means, the influence of micro- and nanocomposite formation on the synergistic flame retardancy between nanoclays and a conventional mineral-type flame-retardant additive, namely aluminium tri-hydroxide, was investigated in terms of limiting oxygen index, horizontal burning rates and cone calorimetric fire properties. Reductions in peak heat release rates in the cone calorimeter were doubled with nanocomposites relative to microcomposites, attributed to char enhancement and lower mass loss rates. This was accompanied by higher limiting oxygen index, lower burning rates and better mechanical properties. In particular, the formation of nanocomposites allowed for the recovery of tensile strength reductions caused by high loadings of aluminium tri-hydroxide in the polymer.  相似文献   

3.
In this article, oyster shell powder (OSP) was used as fire safety agent with ammonium polyphosphate (APP) in thermoplastic polyurethane (TPU) composites. The synergistic fire safety improvement between OSP and APP was intensively investigated using limiting oxygen index (LOI), UL‐94, smoke density test (SDT), and cone calorimeter test (CCT). There is a good synergistic effect of reducing the fire hazards when OSP was used with APP in TPU. The peak heat release rate (pHRR) of the sample with 2.0‐wt% OSP and 8.0‐wt% APP decreased to 86.8 kW/m2 from 175.7 kW/m2 of the sample with only 10.0‐wt% APP. The SDT results showed that the luminous flux of sample OSP2/APP8 was up to 28.9% at the end of experiment with flame, which was much higher than that of pure TPU (1.5%). The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis/Fourier infrared spectrum analysis (TG‐IR). The result revealed the inert gasses (including CO2 and water vapor) produced by the reaction between OSP and APP. A char formed on the surface of composites, hindered the flame spread, reduced the release of combustible gas, and restricted the precursor of smoke into combustion zone.  相似文献   

4.
The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR-FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively.All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed.  相似文献   

5.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
将改性后的海泡石添加到聚磷酸铵(APP)和双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数(LOI)、热重分析(TGA)、光电子能谱(XPS)、傅里叶变换红外(FTIR)光谱、锥形量热仪(CONE)和扫描电镜(SEM)考察其对膨胀阻燃体系的催化协效作用,探讨作用机理.LOI结果表明,改性的海泡石比纳米水滑石和有机改性的蒙脱土有更好的催化协效作用.CONE数据证实,海泡石可以降低膨胀阻燃聚丙烯体系的热释放速率和总的热释放量.通过观察SEM图片发现,海泡石可以改善膨胀炭层的形貌,提高炭层的隔热隔质性能.TGA结果表明,在氮气和空气气氛下,海泡石均可以提高膨胀炭层的热稳定性,增加高温时残余物的量,其主要作用对象为APP.FTIR和XPS测试发现加热过程中海泡石可以与APP发生化学反应,形成P—O—Si键,增加了APP高温时的稳定性.  相似文献   

7.
The influence of the incorporation of polyamide-6 (PA) and natural sepiolite nanoparticles on both the thermal degradation and fire behaviour of polypropylene (PP) matrix has been investigated by thermogravimetric analysis (TGA) and mass loss calorimetry. For that purpose, PP/PA blends and nanocomposites thereof were prepared by melt processing. TGA results evidenced that the use of maleic anhydride grafted-polypropylene (MA-g-PP) as compatibilizer led to a significant improvement in thermal stability under air. Such improvement was linked to the formation of a char layer preventing the thermo-oxidative degradation of PP. Interestingly, the thermal resistance of this char layer was further improved by adding 5 wt% of natural sepiolite leading to important increase of time to ignition and reduction of peak of heat release rate (pHRR) during mass loss calorimeter test.  相似文献   

8.
The thermal and fire properties of polystyrene (PS) flame retarded by a system composed of ammonium polyphosphate (APP) and wollastonite (W) were investigated by thermogravimetric analysis, pyrolysis‐combustion flow calorimeter, pyrolysis gas chromatography mass spectrometry, cone calorimetry and epiradiator. The combustion residues were observed by scanning electron microscopy/energy dispersive X‐ray spectroscopy and analyzed by X‐ray diffraction. The combination of both additives enables increasing the thermal stability of PS while increasing simultaneously the high temperature residue. The peak of HRR was also significantly reduced while time to ignition varied depending on the composition. It was shown that the degradation pathway of PS was affected by the presence of the additives implying a reduction of the effective heat of combustion. In the condensed phase, APP decomposition promotes char formation and favors the reactivity between phosphorus and silicate. A layer composed of char, W and a mixture of calcium and silicon phosphate is formed at the sample surface during combustion. This layer is cohesive enough to limit the release of combustible gases to the gas phase. Moreover, the thermally stable protective layer reaches high temperature enabling the re‐irradiation of a part of the incident heat flux. The flame retardancy of PS is thus enhanced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Styrene-butyl acrylate copolymer based fire retardant coatings were prepared using intumescent flame-retardant additives and mineral clay type rheological additives. Three different widely used nanoclays, organic-modified montmorillonite, palygorskite and sepiolite were applied in order to determine their effect on the flame retardancy. Significant differences were found when their heat-shielding activities were evaluated. It was observed that the addition of different clay particles in amount of 0.25 w% changes the char formation process; the height, the morphology, the structure and also the mechanical resistance of the protecting shield. The different geometry and composition of the additives induced different changes in fire performance. In case of palygorskite the catalytic effect of Fe accelerated mainly the thermal decomposition, therefore the fire resistance decreased. The plate-like montmorillonite reduced the extent of the intumescent char, whereas also improved the mechanical and sustained heat resistance of the fire protecting shield. The fibrous sepiolite of low Fe content assisted the development of efficient protecting shield, which exhibited optimal cell structure, suitable thickness, and thus ensured better heat-insulating performance. Consequently, fire retardant effect of sepiolite was found to be better than the other studied clay types.  相似文献   

10.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
With a shell of starch-melamine-formaldehyde (SMF) resin, core/shell-like ammonium polyphosphate (SMFAPP) is prepared by in situ polymerization, and is characterized by SEM, FTIR and XPS. The shell leads SMFAPP a high water resistance and flame retardance compared with APP in polypropylene (PP). The flame retardant action of SMFAPP and APP in PP are studied using LOI, UL 94 test and cone calorimeter, and their thermal stability is evaluated by TG. The flame retardancy and water resistance of the PP/SMFAPP composite at the same loading is better than that of the PP/APP composite. UL 94 ratings of PP/SMFAPP can reach V-0 at 30 wt% loading. The flame retardant mechanism of SMFAPP was studied by dynamic FTIR, TG and cone calorimeter, etc.  相似文献   

12.
Synergistic effect was observed between expandable graphite (EG) and ammonium polyphosphate (APP) on flame retarded polylactide (PLA) in this paper using limiting oxygen index (LOI), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) and cone calorimeter tests etc. In the experiments, PLA composites with 15 wt% of APP/EG(1:3) combinations showed a LOI value of 36.5 and V-0 rating in UL-94 tests, greatly improved flame retardant properties from composites with APP or EG alone. Results from TGA and cone calorimeter demonstrated that APP/EG combination could retard the degradation of polymeric materials above the temperature of 520 °C by promoting the formation of a compact char layer. This char layer protects the matrix effectively from heat penetrating inside and prevents its further degradation, resulting in lower weight loss rate and better flame retarded performance.  相似文献   

13.
Ethyl cellulose, a widely used bio-degradable shell material, microencapsulated ammonium polyphosphate (MAPP) was added to the bio-degradable poly(butylene succinate) (PBS) to improve its flame retardancy, compatibility, and thermal stability. The MAPP was well characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), water contact angle, and thermogravimetric (TG) analysis. The SEM results indicate the improved dispersion of MAPP into PBS matrix and the formation of the strong interfacial adhesion between MAPP and PBS than APP. With the incorporation of MAPP and char-forming agent into PBS, the limiting oxygen index of the composite was increased to 35.5 %, and the sample can pass the UL-94 V-0 rating, while the un-microencapsulated counterpart cannot reach the rating. The cone calorimeter test showed that the peak heat release rate was decreased by 46.7 % and the burning time was also prolonged compared to the pure PBS. The increased melt flow index and rheology test indicated the increase of viscosity and the improvement of anti-dripping properties. Moreover, the mechanical properties and thermal stability of MAPP composite were also obviously enhanced after the microencapsulation by mechanical, dynamical mechanical thermal analysis, and TG analysis.  相似文献   

14.
The effect of layered silicate nanoclays, nano-silica and double-walled carbon nanotubes (DWNTs) on the thermal stability and fire reaction properties of two aerospace grade epoxy resins (a high temperature curing tetra-functional and a low temperature curing bi-functional resin) has been investigated using thermal analysis, cone calorimetry, LOI and UL-94 techniques. The morphology of the polymer-clay nanocomposites, determined by X-ray diffraction and transmission electron microscopy indicated intercalated structures. The addition of nanoclays (5-wt%) to both resins had a thermal destabilisation effect in the low temperature regime (<400 °C), but led to higher char yield at higher temperatures. The inclusion of nano-silica at 30-wt% significantly improved the thermal stability of the resins while DWNTs had an adverse effect due to their poor dispersion in the matrix. The nanoclays and carbon nanotubes significantly increased the fire resistance of the tetra-functional epoxy resin while a minimal effect was observed for the bi-functional resin.  相似文献   

15.
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect.  相似文献   

16.
Microencapsulated flame retardant, bisphenol-A bis (diphenyl phosphate) (BDP), with a silane shell was prepared by sol–gel process with the goal of incorporating them in polymeric matrices by melt blending to improve the flame retardancy of isotactic polypropylene (iPP) and polyethylene terephtalate (PET). The influence of the loading content on thermal transitions has been studied by differential scanning calorimetry (DSC), the thermal stability of the polymer/microcapsules composites has been assessed by thermogravimetric analysis (TGA) and cone calorimetry has been used to study the fire reaction. It was noticed that the microcapsules have a limited influence on the thermal transitions of iPP matrix, but a decrease of the melting and glass transition temperatures was detected for the PET microcomposites. TGA results showed that the addition of microcapsules could improve char formation of the PET systems both in nitrogen and in air atmospheres, whereas only a small improvement of the thermal stability was detected in oxidative atmosphere for the iPP samples. Furthermore, cone calorimeter experiments show that the incorporation of microcapsules in the iPP gives almost no improvement in the iPP fire reaction. However, the microcapsules act as flame retardant in PET reducing the heat release rate during the combustion and the total heat evolved. Therefore, microcapsules can act as a char promoter agent to enhance the fire resistance in the case of PET.  相似文献   

17.
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes.  相似文献   

18.
Co-microencapsulated ammonium polyphosphate (APP) and pentaerythritol (PER) [M (A&P)] is prepared using melamine–formaldehyde resin by in situ polymerization method and characterized using energy dispersive spectrometer and Fourier transform infrared spectra. Thermal stability and fire resistance behavior have been analyzed and compared. The co-microencapsulation of APP and PER leads to a great improvement of its thermal stability investigated by thermogravimetric analysis. The temperature of maximum mass loss rate of M (A&P) is 30 °C higher than that of APP/PER mixture. The flame-retardant effect of M (A&P) in coating composite is evaluated by carbonization volume, flame spread rate, and cone calorimeter. Results show that the flame-retardant properties of M (A&P) in coating composite is much better than that of APP/PER mixture coating composite.  相似文献   

19.
At present, little information is available in the scientific literature related to the durability (weathering resistance) of fire-retarded wood and natural fiber-reinforced thermoplastics. In this work, thermoplastic profiles for façade applications based on high-density polyethylene, wheat straw particles, and fire-retardants were extruded and their reaction-to-fire performance before and after artificial weathering evaluated. Profile geometries were either solid or hollow-core profiles, and fire-retardants (FR) were added either in the co-extruded layer or in the bulk. Various FR for inclusion in the co-extruded layer were screened based on UL-94 tests. For profile extrusion, two types of FR were chosen: a coated intumescent combination based on ammonium polyphosphate (APP) and an APP coated with melamine and without formaldehyde. Before weathering, the peak heat release rate (pHRR) and the total heat release (THR), which were determined using cone calorimeter measurements, were reduced by up to 64% and 67% due to the FR. However, even before weathering, pHRR of the profiles was relatively high, with best (lowest) values between 230 and 250 kW/m2 under the test conditions. After 28 days of artificial weathering, changes in reaction-to-fire performance and color were evaluated. Use of the APP in the co-extruded layer worsened color change compared to the formulation without APP but the pHRR was not significantly changed. The influence of weathering on the fire behavior was small compared to the difference between fire-retarded and non-fire-retarded materials. Results from the cone calorimeter were analyzed with regard to ETAG 028, which provides requirements related to the durability of fire performance of building products. In many formulations, increase in THR was less than 20% compared to before weathering, which would place some of the profiles in class C or better (EN 13501-1). However, due to the high pHRR, at best, class D was obtained under the conditions of this study. In addition to cone calorimeter measurements, results from the single flame source test, limiting oxygen index determination and thermogravimetric analysis, are shown and discussed. Strength properties, water uptake and swelling of the profiles, thermal conductivity, and energy dispersive X-ray data are also presented.  相似文献   

20.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号