首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1,4,8,9‐Naphthalene diimides (NDIs) with strong electron accepting ability and high stability are excellent building blocks for semiconductor polymers. However, 1,8‐naphthalene monoimide (NMI) with similar structure and energy levels as that of NDI has never been used to construct conjugated polymers because of synthetic difficulty. Herein, 3,6‐dibromo‐NMI (DBNMI) with bulky alkyl groups was obtained effectively in a four‐step synthesis, and three donor‐acceptor (D‐A) type conjugated polymers based on NMI were firstly prepared. These polymers have strong absorption in the range of 300–600 nm, low LUMO level of 3.68 eV, and moderate bandgaps of 2.18 eV. Space charge limiting current measurements indicate these polymers are typical electron transporting materials, and the highest electron mobility is up to 5.8 × 10−3 cm2 V−1 s−1, which is close to the star acceptor based on NDI (N2200, 5.0 × 10−3 cm2 V−1 s−1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 276–281  相似文献   

2.
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V−1 s−1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.  相似文献   

3.
Herein, we report the synthesis, characterization, and field‐effect properties of two cross‐conjugated dithienylmethanone (DMO)‐based alternating polymers, namely, PDMO‐S and PDMO‐Se . Both polymers possess high thermal stability, good solubility, and broad absorption spectra. Their electrochemical properties were investigated using cyclic voltammetry, indicating that PDMO‐Se has higher HOMO/LUMO energy levels of −5.49/−3.49 eV than −5.57/−3.58 eV of PDMO‐S . The two polymers exhibited promising charge transport properties with the highest hole mobility of 0.12 cm2 V−1 s−1 for PDMO‐S and 0.025 cm2 V−1 s−1 for PDMO‐Se . AFM and 2D‐GIXRD analyses demonstrated that the PDMO‐S formed lamellar, edge‐on packing thin film with close ππ stacking. These findings suggest that cross‐conjugated polymers might be potential semiconducting materials for low‐cost and flexible organic electronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1012–1019  相似文献   

4.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

5.
Propargyl methacrylate with its acetylene function protected with a silyl group is polymerized via the reversible addition fragmentation chain transfer (RAFT) process, using cyanoisopropyl dithiobenzoate (CPDB) as RAFT agent, and subsequently deprotected to afford a polymer backbone where each repeated unit is decorated with an acetylene functionality (1000 < Mn < 13,600 g mol−1, 1.07 < PDI < 1.29). In parallel, an azide functionalized xanthate (ethoxythiocarbonylsulfanyl‐acetic acid 3‐azido‐propyl ester) was employed to prepare narrow polydisperse poly(vinyl acetate) (Mn = 850 g mol−1, PDI = 1.20). The two polymers are conjugated by Huisgen 1,3‐dipolar cycloaddition to afford narrow polydisperse comb polymer (1.12 < PDI < 1.18, 3400 < Mn < 12,500 g mol−1, based on linear polystyrene calibration, 4500 < M < 15,600 g mol−1). The study places special emphasis on following the copper catalyzed 1,3‐dipolar cycloaddition via Fourier Transform Infrared Spectroscopy (FTIR) as well as via on‐line UV–Vis photospectrometry on several model compounds, i.e. the nonmonomer inserted azido‐xanthate RAFT/MADIX agent as well as a 2‐propargyl‐2‐bromopropionate and 3‐azidopropyl‐2‐bromopropionate model compounds. A suitable absorption band in the VIS at 666 nm (tentatively assigned to a charge transfer complex between copper(I) and the forming triazole moieties) is identified as a promising sensor for following the click reaction kinetics, thus allowing for the rapid assessment of reaction completion in an on‐line fashion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 155–173, 2008  相似文献   

6.
We have synthesized novel σπ conjugated polymers with an alternating organosilanylene and π‐electron system, intending to utilize them for hole‐transporting materials of electroluminescent (EL) devices. 3,6‐Di(lithioethynyl)carbazoles were co‐polymerized with organodichlorosilanes to give the corresponding polymers with molecular weights of MW = 2000–5000. Another type of polymer with a thienylene unit was also synthesized by the nickel‐catalyzed reaction of the di‐Grignard reagent of 1,2‐bis[2‐(5‐bromothienyl)]tetraethyldisilane with 3,6‐dibromocarbazole, the molecular weight being Mn = 3100. The EL devices with a double‐layer system composed of tris(8‐quinolinolato)aluminum(III) and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers, respectively, emit green EL with a maximum intensity of the order of 103 cd m?2. Of these, the device with the thienylene–carbazole polymers exhibited the highest luminance of 1480 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A series of novel low‐bandgap triphenylamine‐based conjugated polymers ( PCAZCN , PPTZCN , and PDTPCN ) consisting of different electron‐rich donor main chains (N‐alkyl‐2,7‐carbazole, phenothiazine, and cyclopentadithinopyrol, respectively) as well as cyano‐ and dicyano‐vinyl electron‐acceptor pendants were synthesized and developed for polymer solar cell applications. The polymers covered broad absorption spectra of 400–800 nm with narrow optical bandgaps ranging 1.66–1.72 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers measured by cyclic voltammetry were found in the range of ?5.12 to ?5.32 V and ?3.45 to ?3.55 eV, respectively. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction photovoltaic devices composing of an active layer of electron‐donor polymers ( PCAZCN , PPTZCN , and PDTPCN ) blended with electron‐acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The photovoltaic device containing donor PCAZCN and acceptor PC71BM in 1:2 weight ratio showed the highest power conversion efficiency of 1.28%, with Voc = 0.81 V, Jsc = 4.93 mA/cm2, and fill factor = 32.1%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Double‐layer electroluminescent (EL) devices composed of an alternating polymer with mono‐, di‐, or tri‐silanylene and phenylene units, [(Si R) m (C6H4)] n (R = alkyl, m = 1–3) as a hole‐transporting layer, and tris(8‐quinolinolato)­aluminium(III) complex (Alq) as an electron‐transporting–emitting layer were fabricated. The longer silanylene chain lengths in the polymer, on going from m = 1 to m = 2 and 3, result in better electrical properties for the EL devices, implying that the σ–π conjugation in the polymers plays an important role in the hole‐transporting properties, including the hole‐injection efficiency from an anode. This is in marked contrast to the improved hole‐transporting properties that occur in response to reducing the silanylene chain length of silanylene‐diethynylanthracene polymers previously reported. The UV absorption maxima of silanylene‐phenylene polymers shift to longer wavelengths with increasing m, and their oxidation peak potentials in cyclic voltammograms shift to lower potential with increasing m, in accordance with the improved electrical properties of the device that are observed with the polymers containing the longer silanylene chain. A triple‐layer EL device with a hole‐transporting layer of monosilanylene‐diethynylanthracene polymer, an electron‐transporting–emitting layer of Alq, and an electron‐blocking layer of N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine (TPD) exhibited a maximum efficiency of 1.0 lm W−1 and a maximum luminance of 14750 cd m−2, both of which are much higher than the values obtained from a conventional EL device with TPD/Alq. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

11.
Donor–acceptor (D–A) conjugated copolymers are one of known classes of organic optoelectronic materials and have been well developed. However, less attention has been paid on acceptor–acceptor (A–A) conjugated analogs. In this work, two types of A–A conjugated copolymers, namely P1‐Cn and P2‐Cn (n is the carbon number of their alkyl side chains), were designed and synthesized based on perylenediimide ( PDI ) and 2,1,3‐benzothiadiazole ( BT ). Different from P1‐Cn , P2‐Cn polymers have additional acetylene π‐spacers between PDI and BT and thus hold a more planar backbone configuration. Property studies revealed that P2‐Cn polymers possess a much red‐extended UV–vis absorption spectrum, stronger π–π interchain interactions, and one‐order larger electron mobility in their neat film state than P1‐Cn . However, all‐polymer solar cells using P1‐Cn as acceptor component and poly(3‐hexyl thiophene) or poly(2,7‐(9,9‐didodecyl‐fluoene)‐alt?5,5′‐(4,7‐dithienyl‐2‐yl‐2,1,3‐benzothiadiazole) as donor component exhibited much better performance than those based on P2‐Cn . Apart from their backbone chemical structure, the side chains were found to have little influence on the photophysical, electrochemical, and photovoltaic properties for both P1‐Cn and P2‐Cn polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1200–1215  相似文献   

12.
The development of selenophene‐flanked DPP (SeDPP) based copolymers, especially for the ambipolar ones, lags behind other aromatic group flanked DPP‐based polymers. Herein, we report two new ambipolar SeDPP‐based conjugated polymers. One is the alternating polymer PSeDPPFT with normal SeDPP and 3,4‐difluorothiophene units. The other is PSeFDFT , in which the electron acceptor unit is replaced by a new SeDPP derivative, referred as to half‐fused SeDPP. The more planar structure of half‐fused SeDPP endows the backbone of PSeFDFT with good rigidity and planarity. Both polymers exhibit ambipolar transporting properties in air. The PSeFDFT based field‐effect transistors (FETs) display higher and more balanced ambipolar properties with μhave of 0.27 cm2·V–1·s–1, μeave of 0.18 cm2·V–1·s–1, and μhave/μeave of 1.5 than those of PSeDPPFT (μhave = 0.11 cm2·V–1·s–1, μeave = 0.042 cm2·V–1·s–1, and μh/μe = 2.6). This is attributed to the more planar structure, lower LUMO level, higher HOMO level, and better interchain packing orientations of PSeFDFT by comparing with PSeDPPFT . Therefore, a new molecular design strategy to modulate the hole and electron transporting properties is proposed for conjugated D‐A polymers.  相似文献   

13.
A series of polyisophthalamides and polyisophthalates having perfluorinated side chains were prepared from 5‐perfluoroalkylisophthaloyl dichlorides. The aromatic polyamides and polyarylates synthesized by conventional low temperature solution polycondensation and interfacial polycondensation, respectively, had inherent viscosities of 0.19 to 1.28 dL g−1 in yields of 65 to 100%. Solubilies of the resulting polymers were improved by incorporating nonafluorobutyl groups but not improved by incorporating heptadecafluorooctyl groups. Although the effect on the glass transition temperature (Tg) of incorporating perfluoroalkyl groups into the aromatic polyamides or polyarylate backbone is great, the incorporation maintained the thermal stability of the polymers. In spite of the rigid nature of perfluoroalkyl groups, Tgs were decreased by incorporating perfluoroalkyl groups. The value of the contact angle of water on the aromatic polyamides films gradually increased with incorporation of the perfluoroalkyl groups. On the other hand, the value of the contact angle remarkably increased when perfluoroalkyl groups were incorporated into polyarylates. The Owens γs were also calculated for some aromatic polyamides by measuring contact angles of diiodomethane on the polymer films. The γs were estimated at 23‐37 mN m−1 and about 10% of them were contributed by hydrogen bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1135–1141, 1999  相似文献   

14.
Solution‐processable polymers consisting of perylene diimide (PDI) acceptor moieties alternating with dithienothiophene (DTT), N‐dodecyl‐dithienopyrrole (DTP), or oligomers of these donor groups have been synthesized. We have, in addition to varying the donor, varied the N,N′ substituents of the PDIs. The thermal, optical, electrochemical, and charge‐transport properties of the polymers have been investigated. The polymers show broad absorption extending from 300 to 1000 nm with optical band gaps as low as 1.2 eV; the band gap decreases with increasing the conjugation length of donor block, or by replacement of DTT by DTP. The electron affinities of the polymers, estimated from electrochemical data, range from ?3.87 to ?4.01 eV and are slightly affected by the specific choice of donor moiety, while the estimated ionization potentials (?5.31 to ?5.92 eV) are more sensitive to the choice of donor. Bottom‐gate top‐contact organic field‐effect transistors based on the polymers generally exhibit n‐channel behavior with electron mobilities as high as 1.7 × 10–2 cm2/V/s and on/off ratios as high as 106; one PDI‐DTP polymer is an ambipolar transport material with electron mobility of 4 × 10–4 cm2/V/s and hole mobility of 4 × 10–5 cm2/V/s in air. There is considerable variation in the charge transport properties of the polymers with the chemical structures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
We have used Suzuki coupling to prepare a series of alternating copolymers featuring coplanar cyclopentadithiophene and hole‐transporting carbazole units. We observed quenching in the photoluminescence spectra of our polymers after incorporating pendent electron‐deficient perylene diimide ( PDI ) moieties on the side chains, indicating more efficient photoinduced electron transfer. Electrochemical measurements revealed that the PDI ‐containing copolymers displayed reasonable and sufficient offsets of the energy levels of their lowest unoccupied molecular orbitals for efficient charge dissociation. The performance of bulk heterojunction photovoltaic cells incorporating the copolymer/[6,6]‐phenyl‐C61‐butyric acid methyl ester blends (1:4, w/w) was optimized when the active layer had a thickness of 70 nm. The photocurrents of the devices were enhanced as a result of the presence of the PDI moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1298–1309, 2010  相似文献   

17.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

18.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
Telechelic copolymers of styrene and different N‐substituted‐maleimides (SMIs) with a molecular weight of 2000–8000 g/mol were synthesized using the starved‐feed‐reactor technique and were nearly bifunctional when the monomer feed had a high styrene concentration. The COOH‐terminated rigid SMI blocks were polycondensated with OH‐terminated poly(tetrahydrofuran) (PTHF) blocks, with a molecular weight of 250–1000 g/mol, which are the flexible parts in the generated homogeneous multiblock copolymer. The entanglement density, which is closely related to the toughness of materials, increased in these flexible SMI copolymers (νe = 5.2 · 1025 m−3) compared to the unflexibilized ones (νe = 2.4 · 1025 m−3). The glass transition temperature of these flexibilized, single‐phase multiblock copolymers was still high enough to qualify them as engineering plastics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3550–3557, 2000  相似文献   

20.
Novel bay‐functionalized perylene diimides with additional substitution sites close to the perylene core have been prepared by the reaction between 1,7(6)‐dibromoperylene diimide 6 (dibromo‐PDI) and 2‐(benzyloxymethyl)pyrrolidine 5 . Distinct differences in the chemical behaviors of the 1,7‐ and 1,6‐regioisomers have been discerned. While the 1,6‐dibromo‐PDI produced the corresponding 1,6‐bis‐substituted derivative more efficiently, the 1,7‐dibromo‐PDI underwent predominant mono‐debromination, yielding a mono‐substituted PDI along with a small amount of the corresponding 1,7‐bis‐substituted compound. By varying the reaction conditions, a controlled stepwise bis‐substitution of the bromo substituents was also achieved, allowing the direct synthesis of asymmetrical 1,6‐ and 1,7‐PDIs. The compounds were isolated as individual regioisomers. Fullerene (C60) was then covalently linked at the bay region of the newly prepared PDIs. In this way, two separate sets of perylene diimide–fullerene dyads, namely single‐bridged (SB‐1,7‐PDI‐C60 and SB‐1,6‐PDI‐C60) and double‐bridged (DB‐1,7‐PDI‐C60 and DB‐1,6‐PDI‐C60), were synthesized. The fullerene was intentionally attached at the bay region of the PDI to achieve close proximity of the two chromophores and to ensure an efficient photoinduced electron transfer. A detailed study of the photodynamics has revealed that photoinduced electron transfer from the perylene diimide chromophore to the fullerene occurs in all four dyads in polar benzonitrile, and also occurs in the single‐bridged dyads in nonpolar toluene. The process was found to be substantially faster and more efficient in the dyads containing the 1,7‐regioisomer, both for the singly‐ and double‐bridged molecules. In the case of the single‐bridged dyads, SB‐1,7‐PDI‐C60 and SB‐1,6‐PDI‐C60, different relaxation pathways of their charge‐separated states have been discovered. To the best of our knowledge, this is the first observation of photoinduced electron transfer in PDI‐C60 dyads in a nonpolar medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号