首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three chiral polymers P‐1 , P‐2 , and P‐3 could be obtained by the polymerization of (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2, 2′‐binaphthol (R‐M‐1) , (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bisoctoxy‐1,1′‐binaphthyl ( R‐M‐2 ), and (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bis (diethylaminoethoxy)‐1,1′‐binaphthyl ( R‐M‐3 ) with 4,7‐diethynyl‐benzo[2,1,3]‐thiadiazole ( M‐1) via Pd‐catalyzed Sonogashira reaction, respectively. P‐1 , P‐2 , and P‐3 can show pale red, blue–green, and orange fluorescence. The responsive optical properties of these polymers on various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Co2+, Ni2+, Ag+, Cd2+, Cu2+, and Zn2+, Hg2+ can exhibit the most pronounced fluorescence response of these polymers. P‐1 and P‐2 show obvious fluorescence quenching effect upon addition of Hg2+, on the contrary, P‐3 shows fluorescence enhancement. Three polymer‐based fluorescent sensors also show excellent fluorescence response for Hg2+ detection without interference from other metal ions. The results indicate that these kinds of tunable chiral polybinaphthyls can be used as fluorescence sensors for Hg2+ detection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 997–1006, 2010  相似文献   

2.
With 3,3′‐bis(2‐oxazolyl)‐1,1′‐bi‐2‐naphthols (BINOL‐Box) synthesized from 1,1′‐bi‐2‐naphthol (BINOL), the enantioselective addition of diethylzinc to aryl aldehydes proceeded smoothly to give secondary aryl alcohols in good yield with good enantioselectivity. Interestingly, the yields and enantioselectivities were affected by the mixing sequence of the reactants. Furthermore, the synthesis of both enantiomers of the addition products has been achieved using the same ligands by choosing achiral additives, Ti(O‐iPr)4 and 4A molecular sieves. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

4.
《Electroanalysis》2006,18(4):417-422
In dimethylformamide containing tetramethylammonium tetrafluoroborate, cyclic voltammograms for reduction of 4,4′‐(2,2,2‐trichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDT) at a glassy carbon cathode exhibit five waves, whereas three waves are observed for the reduction of 4,4′‐(2,2‐dichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDD). Bulk electrolyses of DDT and DDD afford 4,4′‐(ethene‐1,1‐diyl)bis(chlorobenzene) (DDNU) as principal product (67–94%), together with 4,4′‐(2‐chloroethene‐1,1‐diyl)bis(chlorobenzene) (DDMU), 1‐chloro‐4‐styrylbenzene, and traces of both 1,1‐diphenylethane and 4,4′‐(ethane‐1,1‐diyl)bis(chlorobenzene) (DDO). For electrolyses of DDT and DDD, the coulometric n values are essentially 4 and 2, respectively. When DDT is reduced in the presence of a large excess of D2O, the resulting DDNU and DDMU are almost fully deuterated, indicating that reductive cleavage of the carbon–chlorine bonds of DDT is a two‐electron process that involves carbanion intermediates. A mechanistic scheme is proposed to account for the formation of the various products.  相似文献   

5.
Ligands based on polycarboxylic acids are excellent building blocks for the construction of coordination polymers; they may bind to a variety of metal ions and form clusters, as well as extended chain or network structures. Among these building blocks, biphenyltetracarboxylic acids (H4bpta) with C 2 symmetry have recently attracted attention because of their variable bridging and multidentate chelating modes. The new luminescent three‐dimensional coordination polymer poly[(μ5‐1,1′‐biphenyl‐2,2′,4,4′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dizinc(II)], [Zn2(C16H6O8)(C12H10N4)]n , was synthesized solvothermally and characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The crystal structure contains two crystallographically independent ZnII cations. Both metal cations are located on twofold axes and display distorted tetrahedral coordination geometries. Neighbouring ZnII centres are bridged by carboxylate groups in the syn anti mode to form one‐dimensional chains. Adjacent chains are linked through 1,1′‐biphenyl‐2,2′,4,4′‐tetracarboxylate and 1,4‐bis(1H‐imidazol‐1‐yl)benzene ligands to form a three‐dimensional network. In the solid state, the compound exhibits blue photoluminescence and represents a promising candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

6.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

7.
A 1,1′‐bi‐2‐naphthol (BINOL)‐based chiral aldehyde in combination with ZnII shows a highly enantioselective fluorescent response toward functional chiral amines at λ>500 nm. However, the combination of salicylaldehyde and ZnII gives the same fluorescent enhancement for both enantiomers of a functional chiral amine at λ=447 nm. By using the fluorescent responses of the combination of the BINOL‐based chiral aldehyde, salicylaldehyde and ZnII at the two emission wavelengths, both the concentration and enantiomeric composition of functional chiral amines such as amino alcohols, diamines, and amino acids can be simultaneously determined by a single fluorescent measurement. This work provides a simple and convenient method for chiral assay.  相似文献   

8.
In a quest for the main‐chain chiral and highly stable blue‐light‐emitting π‐conjugated polymers, a novel series of soluble conjugated random and alternating copolymers (PF‐BN) derived from fluorene and axially chiral 1,1′‐binaphthol (BINOL) were successfully synthesized by Suzuki coupling polymerization. The polymer structures, optical properties, and their electrochemical properties were investigated by 1H NMR, TGA/DSC, UV‐Vis absorption, photoluminescence, cyclic voltammetry, circular dichroism spectroscopy, and DFT calculations. The blue‐light‐emitting BINOL‐containing copolymers with proper content of BINOL show highly efficient photoluminescence and ultra highly stable light‐emission with almost unchanged fluorescent spectra after annealing at 200 °C in air for 10 h. The joint experimental and theoretical study of the main‐chain chirality reveals that (1) the chirality of BINOL can be transferred to the polymer backbone, (2) the effective conjugation length is about one BINOL and three fluorenes, (3) the main active chiral block in the copolymers is probably composed by one BINOL with the other two or three fluorenes, and (4) the dihedral angle in the PF‐BN copolymers should be larger than 105°. The incorporation of BINOL into the polyfluorene backbone is an effective way to produce highly efficient and stable blue‐light‐emitting main‐chain chiral conjugated polymer with interesting optoelectronic properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3868–3879, 2010  相似文献   

9.
A new (S)‐binaphthalene‐based polymer ( P ‐ 1 ) was synthesized by the polymerization of 5,5′‐((2,5‐dibutoxy‐1,4‐phenylene)bis(ethyne‐2,1‐diyl))bis(2‐hydroxy‐3‐(piperidin‐1‐ylmethyl) benzaldehyde ( M ‐ 1 ) with (S)‐2,2′‐dimethoxy‐(1,1′‐binaphthalene)‐3,3′‐diamine ( M ‐ 2 ) through the formation of a Schiff base; the corresponding chiral polymer ( P ‐ 2 ) could be obtained by the reduction of polymer P ‐ 1 with NaBH4. Chiral polymer P ‐ 1 exhibited a remarkable “turn‐on” fluorescence‐enhancement response towards (D )‐phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P ‐ 1 displays a bright blue fluorescence color change upon the addition of (D )‐phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P ‐ 2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol.  相似文献   

10.
Two new ZnII(μ‐4,4′‐bipy) coordination polymers with acetate anions, [Zn(4,4′‐bipy)(AcO)2] ( 1 ) and [Zn2(4,4′‐bipy)(AcO)4] ( 2 ), have been synthesized. The compounds were characterized with elemental analysis, IR‐, 1H NMR‐, 13C NMR spectroscopy and studied by thermal analysis, fluorescence measurements and x‐ray crystallography. The structural studies of compound 1 suggest the structure is a coordination polymer of zinc(II) consisting of linear double chains formed by bridging 4,4′‐bipy ligand and connection of the acetate‐bridged centrosymmetric [Zn2(OAc)2]2+ nodes.  相似文献   

11.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

12.
Asymmetric anionic polymerizations of 7‐cyano‐7‐alkoxycarbonyl‐1,4‐benzoquinone methides ( 1 ) with various alkoxy groups were performed using chiral initiators such as lithium isopropylphenoxide (iPrPhOLi)/(S)‐(–)‐2,2′‐isopropylidene‐bis(4‐phenyl‐2‐oxazoline) ((–)‐PhBox) and lithium isopropylphenoxide (iPrPhOLi)/(–)‐sparteine ((–)‐Sp) to investigate the effect of the alkoxy groups of alkoxycarbonyl substituent in the monomers 1 and chiral ligands of chiral initiators on the control of chiral center in the formation of polymers. Molar optical rotation values of the polymers were significantly dependent upon alkoxy groups, and the polymers with higher molar optical rotation were obtained in monomers with primary alkoxy groups. The asymmetric anionic oligomerizations of the quinone methides having methoxy( 1a ), ethoxy( 1b ), and n‐propoxy( 1c ) groups with chiral initiators were carried out. Both 1‐mers and 2‐mers were isolated and their optical resolutions were performed to determine the extent of stereocontrol. High stereoselectivity was observed at the propagation reaction, but not at the initiation reaction. The effect of the counterion on the control of chiral center in the formation of the polymer was investigated in the asymmetric anionic polymerizations of 1b with iPrPhOM(M = Li, Na, K)/(–)‐Sp and iPrPhOM(M = Li, Na, K)/(–)‐PhBox initiators and discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We report the synthesis, thermal, one‐ and two‐photon properties of poly(2,6‐bis(p‐dihexylaminostyryl)anthracene‐9,10‐diyl‐altN‐octylcarbazole‐3,6‐/2,7‐diyl) ( P1/P2 ). The as‐synthesized polymers exhibit number‐average molecular weights of 1.7 × 104 for P1 and 2.1 × 104 g/mol for P2 . They emit strong one‐ and two‐photon excitation fluorescence with the peak around 502 nm, and the fluorescence quantum yields around 0.76 in chloroform. In film state, P1 and P2 show different red‐shift emission with the peaks at 512 nm and 523 nm, respectively. The DSC measurement reveals that as‐synthesized polymers are all amorphous aggregates with the glass transition temperatures of 131 °C for P1 and 152 °C for P2 . The solution two‐photon absorption (TPA) properties of P1 and P2 in chloroform are measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses (120 fs). The TPA cross sections (δ) are measured over the range of 700–900 nm. The maximal δ of P1 and P2 all appear at ~800 nm and are 1010 GM and 940 GM per repeating unit, respectively. This suggests that no notable interactions among structure units that impair their fluorescence and TPA properties, and the polymers with large δ can be obtained by using the high TPA‐active units as building blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride and (S)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45–0.70 dL/g, very good solubility in common organic solvents, glass‐transition temperatures of 124–290 °C, and good thermal stability. Wide‐angle X‐ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1′‐binaphthyls along the rigid backbones. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4318–4326, 2004  相似文献   

15.
Electrospray ionization of methanolic solutions of nickel(II) nitrate, 1,1′‐binaphthalene‐2,2′‐diol (BINOL), and secondary alcohols (ROH) inter alia affords monocationic complexes of the type [(BINOLate)Ni(ROH)]+, where BINOLate stands for singly deprotonated BINOL. Upon collision‐induced dissociation (CID), the mass‐selected ions undergo competing fragmentations involving loss of the alcohol ligand and expulsion of the corresponding carbonyl compound. The latter reaction leads to the hydride complex [(BINOL)Ni(H)]+ and can thus be regarded as the reversal of the reduction of ketones with metal hydrides. The possibility of the occurrence of enantioselective gas‐phase reactions is probed for combinations of chiral BINOLate ligands with chiral alkan‐2‐ols. Whereas aliphatic alkan‐2‐ols do not show pronounced chiral effects, enantioselective bond activation is observed for 1‐phenylethanol, indicating an interaction of the aromatic ring of the alkanol with the positively charged metal center.  相似文献   

16.
The potential use of circularly polarized luminescence for object identification in a sensor application is demonstrated. New luminescence probes using pyrene derivatives as sensor luminophores were developed. (R,R)‐Im2Py and (S,S)‐Im2Py contain two chiral imidazole moieties at 1,6‐positions through ethynyl spacers (angle between spacers ca. 180°). The probe molecules spontaneously self‐assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination (Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) without metal ions. However, (R,R)‐Im2Py and (S,S)‐Im2Py exhibit intense chiroptical activity (CD and CPL) upon self‐assembly with Zn2+ ions. (R,R)‐Im2Py and (S,S)‐Im2Py with chemical stimuli‐responsibility allow sensing using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non‐target species.  相似文献   

17.
Blue light‐emitting polyfluorenes, PPF‐FSOs and PPF‐SOFs were synthesized via introducing spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers (2,7‐diyl and 2′,7′‐diyl) (FSO/SOF) into the poly[9,9‐bis(4‐(2‐ethylhexyloxy) phenyl)fluorene‐2,7‐diyl] (PPF) backbone, respectively. With the increasing contents of FSO and SOF moieties, the absorption and PL spectra of PPF‐FSOs show slight red shift, while that of PPF‐SOFs exhibit blue shift, respectively. The HOMO and LUMO levels reduce gradually with increasing SOF unit in PPF‐SOFs. The polymers emit blue light peaked around 430–445 nm and show an excellent spectral stability with the variation in current densities. The distinctly narrowing EL spectra were observed with the incorporation of isomers in the polymers. The full width at half maximum reduced by 15 nm for PPF‐SOFs, resulting in a blue shift with the CIE coordinates from (0.16, 0.11) to (0.16, 0.08). With a device configuration of ITO/PEDOT:PSS/EML/CsF/Al, a maximum luminance efficiency (LEmax) of 2.00 cd A?1, a maximum external quantum efficiency (EQEmax) of 3.76% with the CIE coordinates of (0.16, 0.08) for PPF‐SOF15 and a LEmax of 1.68 cd A?1, a EQEmax of 2.38% with CIE (0.16, 0.12) for PPF‐FSO10 were obtained, respectively. The result reveals that spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers are promising blocks for deep‐blue light‐emitting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2332–2341  相似文献   

18.
A highly enantioselective ring‐opening alkylation reaction between 3‐aryl‐oxindole and N‐(2‐picolinoyl) aziridine has been realized for the first time. The reaction is efficiently mediated by a simple in‐situ‐generated magnesium catalyst and 3,3′‐fluorinated‐BINOL (BINOL=1,1′‐binaphthalene‐2,2′‐diol) has been identified as a powerful chiral ligand. Notably, the fluorine atom on the chiral ligand plays a key role in providing the desired chiral 3‐alkyl‐3‐aryl oxindoles with excellent enantioselectivities.  相似文献   

19.
Two new cationic rhodium(I) complexes with a chiral nitrogen‐containing BINOL‐based diphosphite or phosphonite ligand have been synthesized. Chiral diphosphite was prepared by the reaction of N‐phenyldiethanolamine with two equivalents of [(R)‐(1,1′‐binaphthalene‐2,2′‐diyl)]chlorophosphite. In its rhodium complex the ligand is bound to the metal via both phosphorus atoms, and a Rh–N interaction is also possible. Synthesis of the chiral phosphonite was achieved by the reaction of 2‐(N,N‐dimethylaminophenyl)‐bis(diethylamino)phosphine with one equivalent of R‐BINOL. In its rhodium complex, the ligand is P,N‐bonded, forming a five‐membered chelate ring. The first complex was applied to hydroformylation of styrene and displayed high activity and chemo‐ and regioselectivity, but unfortunately no asymmetric induction was found. Both complexes were evaluated in the hydrogenation of prochiral olefins with moderate activities and low enantioselectivities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The reaction of the 4‐hydroxyquinoline‐3‐carboxylate 6 with pentaerythritol tribromide gave the 1,1′‐(2‐methylenepropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 11 , whose reaction with bromine afforded the 1,1′‐(2‐bromo‐2‐bromomethylpropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 12 . Compound 12 was transformed into the (Z)‐1,1′‐(2‐acetoxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 13 or (E)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylate) 14 . Hydrolysis of the dimer (Z)‐ 13 or (E)‐ 14 with potassium hydroxide provided the (E)‐1,1′‐(2‐hydroxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylic acid) 15 or (Z)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylic acid) 16 , respectively. The nuclear Overhauser effect (NOE) spectral data supported that those hydrolysis resulted in the geometrical conversion of (Z)‐ 13 into (E)‐ 15 or (E)‐ 14 into (Z)‐ 16 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号