首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

2.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

3.
In this work, numerical solution of nonlinear modified Burgers equation is obtained using an improvised collocation technique with cubic B‐spline as basis functions. In this technique, cubic B‐splines are forced to satisfy the interpolatory condition along with some specific end conditions. Crank–Nicolson scheme is used for temporal domain and improvised cubic B‐spline collocation method is used for spatial domain discretization. Quasilinearization process is followed to tackle the nonlinear term in the equation. Convergence of the technique is established to be of order O(h4 + Δt2) . Stability of the technique is examined using von‐Neumann analysis. L2 and L error norms are calculated and are compared with those available in existing works. Results are found to be better and the technique is computationally efficient, which is shown by calculating CPU time.  相似文献   

4.
H. Ammari In this article, an innovative technique so‐called spectral meshless radial point interpolation (SMRPI) method is proposed and, as a test problem, is applied to a classical type of two‐dimensional time‐fractional telegraph equation defined by Caputo sense for (1 < α≤2). This new methods is based on meshless methods and benefits from spectral collocation ideas, but it does not belong to traditional meshless collocation methods. The point interpolation method with the help of radial basis functions is used to construct shape functions, which play as basis functions in the frame of SMRPI method. These basis functions have Kronecker delta function property. Evaluation of high‐order derivatives is not difficult by constructing operational matrices. In SMRPI method, it does not require any kind of integration locally or globally over small quadrature domains, which is essential of the finite element method (FEM) and those meshless methods based on Galerkin weak form. Also, it is not needed to determine strict value for the shape parameter, which plays an important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of SMRPI method are less expensive. Two numerical examples are presented to show that SMRPI method has reliable rates of convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We formulate and analyze a novel numerical method for solving a time‐fractional Fokker–Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534–1550, 2015  相似文献   

6.
This paper is concerned with the numerical solutions of Bratu‐type and Lane‐Emden–type boundary value problems, which describe various physical phenomena in applied science and technology. We present an optimal collocation method based on quartic B‐spine basis functions to solve such problems. This method is constructed by perturbing the original problem and on a uniform mesh. The method has been tested by four nonlinear examples. In order to show the advantage of the new method, numerical results are compared with those obtained by some of the existing methods, such as normal quartic B‐spline collocation method and the finite difference method (FDM). It has been observed that the order of convergence of the proposed method is six, which is two orders of magnitude larger than the normal quartic B‐spline collocation method. Moreover, our method gives highly accurate results than the FDM.  相似文献   

7.
The orthogonal spline collocation (OSC) technique is an efficient way to solve a wide variety of problems that are modeled by ordinary and partial differential equations. In this article, by using OSC method in spatial direction and classical L1 approximation in temporal direction, a fully discrete scheme is established for a class of two‐dimensional multiterm fractional convection‐diffusion reaction equation with variable coefficients. The optimal estimates in Hj (j = 0, 1, 2) norms at each time step are derived. Also, estimate in space is provided. At last, we provide some numerical results to verify the accuracy and efficiency of the proposed algorithm.  相似文献   

8.
We present the method of lines (MOL), which is based on the spectral collocation method, to solve space‐fractional advection‐diffusion equations (SFADEs) on a finite domain with variable coefficients. We focus on the cases in which the SFADEs consist of both left‐ and right‐sided fractional derivatives. To do so, we begin by introducing a new set of basis functions with some interesting features. The MOL, together with the spectral collocation method based on the new basis functions, are successfully applied to the SFADEs. Finally, four numerical examples, including benchmark problems and a problem with discontinuous advection and diffusion coefficients, are provided to illustrate the efficiency and exponentially accuracy of the proposed method.  相似文献   

9.
首次利用三次样条配置方法采用直接法求解了一类非线性分数阶延迟微分方程初值问题,并给出了方法的局部截断误差和若干数值算例.数值结果表明方法求解分数阶延迟微分方程初值问题是非常有效的,结果对于未来研究分数阶延迟微分方程的数值方法具有重要的意义.  相似文献   

10.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

11.
In this article, a kind of meshless local radial point interpolation (MLRPI) method is proposed to two‐dimensional fractional‐time convection‐diffusion‐reaction equations and satisfactory agreements are archived. This method is based on meshless methods and benefits from collocation ideas but it does not belong to the traditional global meshless collocation methods. In MLRPI method, it does not need any kind of integration locally or globally over small quadrature domains which is essential in the finite element method and those meshless methods based on Galerkin weak form. Also, it is not needed to determine shape parameter which plays important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of this kind of MLRPI method is less expensive. The stability and convergence of this meshless approach are discussed and theoretically proven. It is proved that the present meshless formulation is very effective for modeling and simulation of fractional differential equations. Furthermore, the numerical studies on sensitivity analysis and convergence analysis show the stability and reliable rates of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 974–994, 2017  相似文献   

12.
This article studies a class of nonconforming spline collocation methods for solving elliptic PDEs in an irregular region with either triangular or quadrilateral partition. In the methods, classical Gaussian points are used as matching points and the special quadrature points in a triangle or quadrilateral element are used as collocation points. The solution and its normal derivative are imposed to be continuous at the marching points. The authors present theoretically the existence and uniqueness of the numerical solution as well as the optimal error estimate in H1‐norm for a spline collocation method with rectangular elements. Numerical results confirm the theoretical analysis and illustrate the high‐order accuracy and some superconvergence features of methods. Finally the authors apply the methods for solving two physical problems in compressible flow and linear elasticity, respectively. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

13.
This article discusses the spectral collocation method for numerically solving nonlocal problems: one‐dimensional space fractional advection–diffusion equation; and two‐dimensional linear/nonlinear space fractional advection–diffusion equation. The differentiation matrixes of the left and right Riemann–Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy–Feller advection–diffusion equation and space fractional Fokker–Planck equation with initial δ‐peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514–535, 2014  相似文献   

14.
In this article, a numerical technique is presented for the approximate solution of the Bagley–Torvik equation, which is a class of fractional differential equations. The basic idea of this method is to obtain the approximate solution in a generalized form of the Bessel functions of the first kind. For this purpose, by using the collocation points, the matrix operations and a generalization of the Bessel functions of the first kind, this technique transforms the Bagley–Torvik equation into a system of the linear algebraic equations. Hence, by solving this system, the unknown Bessel coefficients are computed. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider the numerical treatment of a fourth‐order fractional diffusion‐wave problem. Our proposed method includes the use of parametric quintic spline in the spatial dimension and the weighted shifted Grünwald‐Letnikov approximation of fractional integral. The solvability, stability, and convergence of the numerical scheme are rigorously proved. It is shown that the theoretical convergence order improves those of earlier work. Simulation is further carried out to demonstrate the numerical efficiency of the proposed scheme and to compare with other methods.  相似文献   

16.
The main objective of the paper is to find the approximate solution of fractional integro partial differential equation with a weakly singular kernel. Integro partial differential equation (IPDE) appears in the study of viscoelastic phenomena. Cubic B‐spline collocation method is employed for fractional IPDE. The developed scheme for finding the solution of the considered problem is based on finite difference method and collocation method. Caputo fractional derivative is used for time fractional derivative of order α, . The given problem is discretized in both time and space directions. Backward Euler formula is used for temporal discretization. Collocation method is used for spatial discretization. The developed scheme is proved to be stable and convergent with respect to time. Approximate solutions are examined to check the precision and effectiveness of the presented method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1565–1581, 2017  相似文献   

17.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
The collocation method based on quartic B‐spline interpolation is studied for numerical solution of the regularized long wave (RLW) equation. The time‐split RLW equation is also solved with the quartic B‐spline collocation method. Numerical accuracy is tested by obtaining the single solitary wave solution. Then, interaction, undulation and evolution of solitary waves are studied. Solutions are compared with available results. Conservation quantities are computed for all test experiments. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

19.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

20.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号