首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental support for the dominance of van der Waals dispersion forces in aromatic stacking interactions occurring in organic solution is surprisingly limited. The size‐dependence of aromatic stacking in an organic solvent was examined. The interaction energy was found to vary by about 7.5 kJ mol−1 on going from a phenyl–phenyl to an anthracene–pyrene stack. Strikingly, the experimental data were highly correlated with dispersion energies determined using symmetry‐adapted perturbation theory (SAPT), while the induction, exchange, electrostatic, and solvation energy components correlated poorly. Both the experimental data and the SAPT‐dispersion energies gave high‐quality correlations with the change in solvent accessible area upon complexation. Thus, the size‐dependence of aromatic stacking interactions is consistent with the dominance of van der Waals dispersion forces even in the presence of a competing polarizable solvent.  相似文献   

2.
Experimental support for the dominance of van der Waals dispersion forces in aromatic stacking interactions occurring in organic solution is surprisingly limited. The size‐dependence of aromatic stacking in an organic solvent was examined. The interaction energy was found to vary by about 7.5 kJ mol?1 on going from a phenyl–phenyl to an anthracene–pyrene stack. Strikingly, the experimental data were highly correlated with dispersion energies determined using symmetry‐adapted perturbation theory (SAPT), while the induction, exchange, electrostatic, and solvation energy components correlated poorly. Both the experimental data and the SAPT‐dispersion energies gave high‐quality correlations with the change in solvent accessible area upon complexation. Thus, the size‐dependence of aromatic stacking interactions is consistent with the dominance of van der Waals dispersion forces even in the presence of a competing polarizable solvent.  相似文献   

3.
 The adhesion behavior that governs many technologically and biologically relevant polymer properties can be investigated by zeta potential measurements with varied electrolyte concentration or pH. In a previous work [1] it was found that the difference of the adsorption free energies of Cl- and K+ ions correlates with the adhesion force caused by van der Waals interactions, and that the decrease of adhesion strength by adsorption layers can be elucidated by zeta potential measurements. In order to confirm these interrelations, zeta potential measurements were combined with atomic force microscopy (AFM) measurements. Force–distance curves between poly(ether ether ketone) and fluorpolymers, respectively, and the Si3N4 tip of the AFM device in different electrolyte solutions were measured and analysed. The adsorption free energy of anions calculated from the Stern model correlates with their ability to prevent the adhesion between the polymer surface and the Si3N4 tip of the AFM device. These results demonstrate the influence of adsorption phenomena on the adhesion behavior of solids. The results obtained by AFM confirm the thesis that the electrical double layer of solid polymers in electrolyte solutions is governed by ion adsorption probably due to van der Waals interactions and that therefore van der Waals forces can be detected by zeta potential measurements. Received: 18 November 1997 Accepted: 19 January 1998  相似文献   

4.
The heats of solution of alcohols in hexane can be considered as the energy necessary to break hydrogen bonds (H-bond). The amount of non H-bonded OH groups estimated from caloric data, are in good agreement with IR-spectroscopic data. Comparison of calorimetric and IR-spectroscopically determined H-bond energies permit the separation of intermolecular van der Waals effects from H-bond interactions. This separation shows that van der Waals interactions of alcohols or water should not be underestimated.  相似文献   

5.
本文通过对环状磷酸酯和环状亚磷酸酯类化合物的分子力学计算,观察到^1^7ONMR化学位移的变化同时受到氧原子局部范德华相互综合利用(E~V~D~W~-~O)和局部偶极相互作用能(E~i~i~p-~O)的影响。此外,在上述两类化合物中,环外氧原子的δ-压缩效应极为明显,这主要是由于该氧原子局部范德华相互作用能起决定作用的缘故。同时,经对二烷基砜类化合物的分子力学计算,首次获得^3^3SNMR化学位移和硫原子局部范德华相互作用能E~V~D~W~-~S之间良好的线性关系。  相似文献   

6.
We calculate the heats of vaporisation for imidazolium‐based ionic liquids [Cnmim][NTf2] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol?1, whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol?1 per CH2‐group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n‐alcohols and n‐alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.  相似文献   

7.
A specific force field of Consistent Valence Force Field type was developed with the aim to simulate the structures of catalysts of vanadium phosphorus oxide type and the reversible adsorption of organic compounds on specific crystallographic planes of such catalysts by molecular modeling. The appropriate parameters were derived for the bonded (stretching, bending, and torsional deformations) and nonbonded (attractive and repulsive van der Waals and Coulomb forces) atomic interactions for V—O and P—O bonds in typical fragments of these catalysts with the vanadium atom in the oxidation state IV. The parameters for bonded interactions were computed from Hessian matrices, supplied by the program DMol for performing Density Functional Theory, by means of a program for non‐linear regression. The DMol program was applied to energy minimize structures of known vanadium phosphorus oxides, which were compared with X‐ray structures, and to obtain their Hessian matrices as a basis for the force constants needed. Some hypothetical structural models had to be added. The van der Waals parameters were estimated by means of correlations between van der Waals radii and the repulsive parameters and between polarizabilities and the dispersive parameters from the literature. The force field obtained was applied to simulate the crystal structure of vanadyl pyrophosphate and to compute the heat of adsorption of n‐butane and of 1‐butene on its (100) plane (computer codes of company Biosym/MSI/Accelrys). The experimental crystal structure and the adsorption energies were fairly well reproduced, except that the a lattice constant proves somewhat too large.  相似文献   

8.
9.
The superior material properties of β‐keratin along with the hierarchical high‐aspect‐ratio structure of geckos' foot pad have enabled geckos to stick readily and rapidly to almost any surfaces in both dry and wet conditions. In this research, nonsticky fluoropolymer (Teflon AF) resembling β‐keratin rigidity and having an extremely low surface energy and dielectric constant was applied to fabricate a novel dry adhesive consisting of high‐aspect‐ratio nanopillars terminated with a “fluffy” top layer. Both the nanopillars and the terminating layer are fabricated concurrently by replica molding using a nanoporous anodic aluminum oxide membrane as the mold. These Teflon AF hierarchical nanostructures are shown to have an exceptional capacity to generate strong adhesion in both dry conditions and under water because of combined actions of van der Waals forces, electrostatic attractions, and hydrophobic effects. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

11.
Density functional theory is in principle exact and includes also long-range interactions, such as the van der Waals interactions. These are, however, part of the exchange-correlation energy functional that needs to be approximated, and are absent in the local and semilocal standard implementations. Recently a density functional which includes van der Waals interactions for planar systems has been developed, which we show can be extended to provide a treatment of planar molecules. We use this functional to calculate binding distances and energies for dimers of three of the smallest polycyclic aromatic hydrocarbons (PAHs)--naphthalene, anthracene, and pyrene.  相似文献   

12.
冯锡章 《化学学报》1987,45(1):65-67
对铀的几个络合物的配位键和Van der Waals能之间的平衡进行分析研究,发现在配位原子间配合键能和最大Van der Waals引力能几乎一致,这有力地支持了堆积模型将成为这一模型进一步发展的基础.  相似文献   

13.
Combining experiment with theory reveals the role of self‐assembly and complexation in metal‐ion transfer through the water–oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X‐ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long‐range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu3+–3(NO3?) ion pairs involves incorporation of the “hard” metal complex into the core of “soft” aggregates. This seeds the formation of reverse micelles that draw the water and “free” amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod‐shaped polynuclear EuIII‐containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O‐donor ligands and anions, provide improved EuIII solvation environments that help drive interfacial transfer, as is reflected by the increasing EuIII partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal‐ion coordination with nanoscale structure to reveal the free‐energy balance that drives the phase transfer of neutral metal salts.  相似文献   

14.
The study of van der Waals clusters is an area of growing interest and is being widely studied for a number of reasons. The measurement of the ionization efficiency (IE) curves have yielded a wealth of information by enabling ionization and appearance energies of ions to be determined which are essential for the calculation of thermochemical data. In the case of van der Waals clusters, the measurement ofIE curves enables one to determine the qualitative trends in the ionization potentials as a function of cluster size. In additionIE curves have also offered valuable insight into ionization related processes occurring in clusters. This paper will cover some of the more recent studies of Penning ionization, exciton induced decay and Coulomb explosion in van der Waals clusters through the use of electron impactIE curves.  相似文献   

15.
Protein-carbohydrate interactions are increasingly being recognized as essential for many important biomolecular recognition processes. From these, numerous biomedical applications arise in areas as diverse as drug design, immunology, or drug transport. We introduce SLICK, a package containing a scoring and an energy function, which were specifically designed to predict binding modes and free energies of sugars and sugarlike compounds to proteins. SLICK accounts for van der Waals interactions, solvation effects, electrostatics, hydrogen bonds, and CH...pi interactions, the latter being a particular feature of most protein-carbohydrate interactions. Parameters for the empirical energy function were calibrated on a set of high-resolution crystal structures of protein-sugar complexes with known experimental binding free energies. We show that SLICK predicts the binding free energies of predicted complexes (through molecular docking) with high accuracy. SLICK is available as part of our molecular modeling package BALL (www.ball-project.org).  相似文献   

16.
In this article, a polarizable dipole–dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen‐bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N? H, C?O, and C? H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole–dipole interaction model to a series of hydrogen‐bonded complexes containing the N? H···O?C and C? H···O?C hydrogen bonds, such as simple amide‐amide dimers, base‐base dimers, peptide‐base dimers, and β‐sheet models. We find that a simple two‐term function, only containing the permanent dipole–dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6‐31G(d) method, whereas the high‐quality counterpoise‐corrected (CP‐corrected) MP2/aug‐cc‐pVTZ interaction energies for the hydrogen‐bonded complexes can be well‐reproduced by a four‐term function which involves the permanent dipole–dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole–dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen‐bonded complexes are further discussed. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Non‐directional van der Waals forces in biological and synthetic supramolecular systems play important roles in molecular assembly, particularly in determining the distances of the interacting species. The van der Waals forces are normally used in combination with other directional forces and are considered to play a secondary role in achieving specificity and fidelity in molecular recognition. Using an ideal supramolecular system consisting solely of hydrogen and carbon atoms, we found that the van der Waals interactions enable the high‐fidelity sorting of two homomeric receptors during ligand‐induced assembly. The self‐sorting occurred in a narcissistic manner by repulsion of a competing diastereoisomeric receptor from the assembly. The structure–sorting relationship study with enantiomers further revealed the dominant role of the van der Waals forces in shape recognition for high‐fidelity self‐sorting.  相似文献   

18.
The effect of different functional groups of methylated urea on the phase transition of poly(N‐isopropylacrylamide) (PNIPAM) aqueous solutions has been studied by a high‐sensitivity differential scanning calorimetry. The results reveal that with the addition of osmolytes with N? H groups, the enthalpy change increases with the number of DSC cycles, presumably due to the gradual formation of hydrogen bonds with dehydrated C?O groups of PNIPAM at high temperature. Moreover, with the addition of tetramethylurea (TMU) without hydrogen bond donor groups, the enthalpy change of PNIPAM solution remains unchanged with the number of DSC cycles and decreases with the TMU concentration, suggesting that the van der Waals interactions between TMU and isopropyl groups of PNIPAM and the weakening of hydrophobic interactions between isopropyl groups play a dominant role in the effect of TMU on the phase transition of PNIPAM. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1145–1151  相似文献   

19.
20.
The self‐assembly behavior of the yeast‐derived bolaamphiphile sophorolipid (SL) is generally studied under acidic/neutral pH conditions, at which micellar and fibrillar aggregates are commonly found, according to the (un)saturation of the aliphatic chain: the cis form, which corresponds to the oleic acid form of SL, spontaneously forms micelles, whereas the saturated form, which corresponds to the stearic acid form of SL, preferentially forms chiral fibers. By using small‐angle light and X‐ray scattering (SLS, SAXS) combined with high‐sensitivity transmission electron microscopy imaging under cryogenic conditions (cryo‐TEM), the nature of the self‐assembled structures formed by these two compounds above pH 10, which is the pH at which they are negatively charged due to the presence of a carboxylate group, has been explored. Under these conditions, these compounds self‐assemble into nanoscale platelets, despite the different molecular structures. This work shows that the electrostatic repulsion forces generated by COO? mainly drive the self‐assembly process at basic pH, in contrast with that found at pH below neutrality, at which self‐assembly is driven by van der Waals forces and hydrogen bonding, and thus, is in agreement with previous findings on carbohydrate‐based gemini surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号