首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu2O.  相似文献   

2.
Raman spectroscopy of the one‐dimensional atomic or molecular chains, which are the attractive building blocks of advanced nanoscale materials, is crucial in understanding the physical properties of the one‐dimensional atomic or molecular chains. Here, we introduce the bromine into the one‐dimensional channels of AlPO4‐5 single crystals through a physical vapor diffusion method. Raman spectroscopy indicates that the confined bromine structures mainly exist as (Br2)n chains, individual Br2 molecules, and a small amount of Br3 chains inside the channels of AlPO4‐5 single crystals. Polarized Raman spectra demonstrate that the bromine molecular chains are approximately parallel to the channel direction of AlPO4‐5 single crystals. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Solid and hollow YF3:Eu3+ spheres assembled by nanorods have been successfully synthesized via a facile arginine-assisted hydrothermal method and followed by a subsequent heat-treatment process. The experimental results reveal that the as-prepared YF3:Eu3+ spheres are composed of the nanorods with a diameter of 20–50 nm and a length of 200–500 nm, the morphologies of YF3:Eu3+ have been changed from solid to hollow spheres assembled by nanorods. With increase of hydrothermal temperature and time, the diameter of YF3:Eu3+ spheres can be controlled from 300 to 800 nm. The solid and hollow spheres show an intense orange red emission peak near 595 nm, corresponding to the 5D0 → 7F1 transition of Eu3+. The possible formation mechanism for the hollow spheres has been presented in detail. This amine acid-assisted method is very simple, economic and environmental friendly for organic-free solvent, which would be potentially used in synthesizing other hollow materials.  相似文献   

4.
A new, well‐designed type of micron‐sized hollow copper spheres was synthesized in this article. The process was performed using ZSM‐5 molecular sieve as a template. It has the prominent advantage in that the various stages of pretreatment for the core material can be omitted because of the inherent nature of the ZSM‐5 molecular sieve. The surface of the sieve consists entirely of negatively charged oxygen sites such that free Cu2+ ions can easily be adsorbed and reduced there, acting thereafter as a seed and self‐catalyst for electroless plating of copper so as to lead to the formation of interconnected Cu particles around the external surface of the ZSM‐5 molecular sieve. Moreover, there are many holes with a size of more than 5 × 5 Å2 on the surface of the ZSM‐5 molecular sieve, which can act as concavities that the reduced Cu can ‘rivet’ into, resulting in the link between the molecular sieve and the reduced Cu being stronger. In addition, the ZSM‐5 molecular sieve has the merits of ease of removal, low cost, and less aggregation owing to its micrometer size, and it avoids the use of nonvolatile surfactants, which may be adsorbed onto the reduced Cu and then interfere with the possible application of the hollow copper spheres in catalysis and in analytical devices based on surface‐enhanced Raman scattering (SERS) spectroscopy. The copper spheres obtained show enhanced Raman scattering in the presence of adsorbed 4‐mercaptobenzoic acid (4‐MBA) with excitation at 632.8 nm, and the enhancement factor reaches ∼7 × 103. The new micron‐sized hollow copper spheres are produced in a simple and cost‐effective method; so they are expected to play an important role in the fields of catalysts, fillers, and engineering, and in the development of SERS‐based analytical devices. The synthetic method may represent a novel route to prepare hollow metal spheres, which is a subject of intense interest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe3O4 nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe3O4 nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe2+ and Fe3+ and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.  相似文献   

6.
Iodine molecules have been incorporated into the channels of calcined AlPO4-5 crystals by using vapor-phase diffusion method. XRD results indicate that the iodine-loaded AlPO4-5 crystals are of similar structure as that of as-synthesized AlPO4-5 crystals. TG and XRF analyses reveal that the iodine molecules have not compactly filled the channels of AlPO4-5 crystals, and the desorbing process of adsorbed iodine is quite different from that of adsorbed water. Polarized Raman spectra imply that the iodine exists in the channels of AlPO4-5 crystals as vapor-like I2 molecules, and the I2 molecules orientate randomly.  相似文献   

7.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

8.
It is important to study the interaction of ionic liquids (ILs) with protein for the applications of ILs in biochemical process, and help the researchers to choose and design the better ILs to serve as a solvent. In this work, the interaction between 1-alkyl-3-methylimidazolium bromide [Cnmim]Br (n=4, 6, 8, 10) and bovine serum albumin (BSA) was systematically investigated for the first time by multi-spectroscopic approach (fluorescence, UV–vis and FT-IR spectroscopy) and density functional theory (DFT). [Cnmim]Br (n=4, 6, 8, 10) can bind to BSA by H-bond interaction between their cationic headgroups and Asp/Glu amino acid residue at the surface of BSA, and hydrophobic interaction between their hydrocarbon chains and the hydrophobic amino acid residues in the interior of BSA. On the basis of thermodynamic parameters and the similar structure of [Cnmim]Br (n=4, 6, 8, 10), it can be inferred that the hydrophobic interaction plays a major role in the interaction of [C10mim]Br with BSA, while the hydrogen bond and van der Waals force play a major role in the interaction of [Cnmim]Br (n=4, 6, 8) with BSA. Synchronous fluorescence and FT-IR spectra indicate that [C10mim]Br could markedly change the secondary structure of BSA, while [Cnmim]Br (n=4, 6, 8) could slightly change the secondary structure of BSA. The results allowed us to understand (i) the effect of the alkyl chain length of the cation on the mechanism of ILs–protein interaction and (ii) the effect of the alkyl chain length of the cation on the protein secondary structure.  相似文献   

9.
We point out in this paper that a TEM101 mode laser beam is convenient to stably levitate either solid or hollow dielectric spheres or metallic ones. Except a sufficient incident flux, there is no stability condition required to levitate solid transparent spheres having a refractive index larger than the one of the surrounding medium. According to the beam and sphere diameters, the equilibrium position will be centered on the beam axis or off-axis. In the case of hollow dielectric or metallic spheres, the lateral stability requires specific conditions on sphere and beam diameters. These conditions are discussed and then experimentally shown by performing optical levitation of these various kinds of spheres either in vertical or in horizontal beams.  相似文献   

10.
Core–shell multifunctional composite spheres consisting of Fe3O4–polyaniline (PANi) shell and polystyrene (PS) core were fabricated using core–shell-structured sulfonated PS spheres (with uniform diameter of 250 nm) as templates. PANi was doped in situ by sulfonic acid resulting the composite spheres are well conductive. Dissolved with solvent, PS cores were removed from the core–shell composite spheres and hollow Fe3O4–PANi spheres were obtained. Removing the PANi and PS components by calcinations produced hollow Fe3O4 spheres. The cavity size of the hollow spheres was uniformly approximate to 190 nm and the shell thickness was 30 nm. The cavity size and the shell thickness can be synchronously controlled by varying the sulfonation time of the PS templates. The shell thickness in size range was of 20–86 nm when the sulfonation time was changed from 1 to 4 h. These resulting spheres could be arranged in order by self-assembly of the templates. Both the Fe3O4–PANi/PS composite spheres and the hollow Fe3O4 spheres exhibit a super-paramagnetic behavior. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder scattering were used to characterize these as-prepared spheres. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Hollow ZnV2O4 spheres with the shell aggregated by small nanoparticles were successfully synthesized through a facile one-pot template-free solvothermal method. The as-prepared product was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller N2 adsorption-desorption analyses. The formation of ZnV2O4 hollow spheres was based on flowerlike intermediate products supported reduction-dissolution-aggregation process at the expense of consumption of all the flowerlike products. The obtained ZnV2O4 hollow spheres showed a good adsorption capacity of methylene blue (MB) organic dye, which might be attributed to their special structural feature with large surface area. The adsorption kinetics and isotherm of MB on ZnV2O4 hollow spheres were also studied.  相似文献   

12.
Metal oxides/MnO2 hierarchical hollow hybrid nanostructures have attracted significant attention because of their wide potential applications. However, the exploration of a general synthetic approach for fabricating hierarchical hollow hybrid nanostructures is still a great challenge. Herein, a “penetration‐carbonization and reduction‐coating–annealing” route is presented for the generalized synthesis of metal oxides/MnO2 hierarchical hollow hybrid spheres, including NiO/MnO2, Co3O4/MnO2, and CuO/MnO2. Because of the unique hierarchical hollow hybrid nanostructures, NiO/MnO2 nanomaterials possess a desirable capacity (1520 mA h g−1) and outstanding cyclic stability (909 mA h g−1 at the 200th cycle) as Li‐ion battery anode materials. The work reported herein can not only pave the way for the generalized synthetic strategy of metal oxides/MnO2 hierarchical hollow hybrid nanostructures, but also provide a promising application of NiO/MnO2 nanomaterials for Li‐ion battery anode.  相似文献   

13.
TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2−xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2−xNx in spite of the structural difference.  相似文献   

14.
An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.  相似文献   

15.
以BiNO3·5H2O和NH4VO3为原料,柠檬酸为络合剂,成功合成了BiVO4空心纳米球.采用TEM、XRD、UV-Vis等测试技术对样品的形貌、相结构以及光吸收性能等进行了表征.结果表明,所制备的BiVO4空心微球在紫外区和可见区均有较强的光吸收,空心球平均粒径为160 nm,空腔直径为10~80 nm.以亚甲基蓝染料溶液的脱色降解实验为模型反应研究了样品的光催化性能.光催化实验结果表明,在可见光照射下,反应150 min后,样品对亚甲基蓝溶液的脱色率可达到95%以上.此外,考察了柠檬酸添加量对空心球形貌的影响,并提出了BiVO4空心纳米球的可能形成机理.  相似文献   

16.
It is very important to exploit low‐cost and efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts for the development of renewable‐energy conversion and storage techniques. Although much attention has been made to develop efficient catalysts for ORR and OER, it is still highly desired to create new bifunctional catalysts. In this study, Co3O4 hollow polyhedrons are synthesized as efficient bifunctional electrocatalysts for ORR and OER by simple one‐step annealing Co‐centered metal–organic frameworks (ZIF‐67). Due to the large specific surface areas and high porosity, the as‐prepared Co3O4 hollow polyhedrons exhibit excellent electrocatalytic activities for ORR and OER in alkaline media. Co3O4 hollow polyhedrons show higher peak current density (0.61 mA cm?2) with four‐electron pathway than Co3O4 particles (0.39 mA cm?2), better methanol tolerance and superior durability (82.6%) than commercial Pt/C electrocatalyst (58.6%) for ORR after 25 000 s. In addition, Co3O4 hollow polyhedrons also display excellent OER performances with smaller overpotential (536 mV) for 10 mA cm?2 than Co3O4 particles (593 mV) and superior stability (86.5%) after 25 000 s. This facile one‐step strategy based on metal–organic frameworks self‐sacrificed templates can be used to develop the promising well‐defined porous hollow metal oxides electrode materials for energy conversion and storage technologies.  相似文献   

17.
A template‐free hydrothermal method is developed to prepare hierarchical hollow precursors. An inside‐out Ostwald ripening mechanism is proposed to explain the formation of the hollow structure. After the calcination in the air, hierarchically meso/macroporous NaCoPO4–Co3O4 hollow microspheres can easily be obtained. When being evaluated as electrode materials for a supercapacitor, the hierarchically porous NaCoPO4–Co3O4 hollow microspheres electrode shows a specific capacitance of 268 F g?1 at 0.8 A g?1 and offers a good cycle life. More importantly, the obtained materials are successfully applied to fabricate flexible solid‐state asymmetric supercapacitors. The device exhibits a specific capacitance of 28.6 mF cm?2 at 0.1 mA cm?2, a good cycling stability with only 5.5% loss of capacitance after 5000 cycles, and good mechanical flexibility under different bending angles, which confirms that the hierarchically porous NaCoPO4–Co3O4 hollow microspheres are promising active materials for the flexible supercapacitor.  相似文献   

18.
Several quaternary ammonium bromides possessing long alkyl chains and their mixtures were found to be bromide ion conductors. The ionic conductivities of quaternary ammonium bromides themselves were lower than 10?9 S cm?1 at a room temperature. On the other hand, the eutectic mixtures of the quaternary ammonium bromides showed large increase of ionic conductivity. The best bromide ion conductors were found for the eutectic of Q5, Q7, Q8, and Q12: 4×10?8 S cm?1 at 30°C, and 6.3×10?6 S cm?1 at 50°C. Addition of asymmetric quarternary ammonium bromides had a negative effect on the ionic conductivity. These results were explained by a space filling factor in the solid.  相似文献   

19.
The chemiluminescent oxidation of some phthalhydrazide derivatives, luminol (LUM), isoluminol (ISOL), N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and N-(6-aminohexyl)-N-ethylisoluminol (AHEI), has been carried out in micellar media and in the presence of natural cyclodextrins (CDs), using Co(II) as catalyst and H2O2 as oxidant. The cationic cetyltrimethylammonium bromide (CTAB) and, in a lesser extent, the anionic sodium dodecyl sulfate (SDS) produce quenching in the chemiluminescence (CL) of all the luminophores at concentrations above the cmc, whereas slight enhancements are attained with the non-ionic pentaethylene glycol monododecyl ether (C12E5). On the contrary, the incorporation of the CDs to the reaction produces a remarkable intensification of the CL. Binding of the luminophores to the macrocycles and the micelles has been studied by Pulsed-Gradient-Spin-Echo-NMR (PGSE-NMR) and fluorescence anisotropy. The cationic CTAB decreases the emission mainly due to charge compensation as a result of the association of the luminophores and the luminescent intermediates to the micelles. The presence of the alkyl substituents of ABEI and AHEI provides an additional hydrophobic contribution to the binding process. SDS quenches this reaction as the micelles retain Co(II) on their anionic layer. The protection and stabilization of these luminophores or their luminescent intermediates provided by the cavities of the CDs make this family of cyclic oligosaccharides much more suitable agents than the surfactants for enhancing the CL in aqueous media for this specific reaction.  相似文献   

20.
The α-Fe2O3/TiO2 bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb2+ are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe2O3/TiO2 hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe2O3/TiO2 hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe2O3/TiO2 hollow spheres is 32.36 mg g?1. Moreover, the hierarchical α-Fe2O3/TiO2 hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe2O3/TiO2 hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号