首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In this article, we present a new fully discrete finite element nonlinear Galerkin method, which are well suited to the long time integration of the Navier-Stokes equations. Spatial discretization is based on two-grid finite element technique; time discretization is based on Euler explicit scheme with variable time step size. Moreover, we analyse the boundedness, convergence and stability condition of the finite element nonlinear Galerkin method. Our discussion shows that the time step constraints of the method depend only on the coarse grid parameter and the time step constraints of the finite element Galerkin method depend on the fine grid parameter under the same convergence accuracy. Received February 2, 1994 / Revised version received December 6, 1996  相似文献   

2.
The discretization of transient magneto-dynamic field problems with geometric discretization schemes such as the Finite Integration Technique or the Finite-Element Method based on Whitney form functions results in nonlinear differential-algebraic systems of equations of index 1. Their time integration with embedded s-stage singly diagonal implicit Runge–Kutta methods requires the solution of s nonlinear systems within one time step. Accelerated solution of these schemes is achieved with techniques following so-called 3R-strategies (“reuse, recycle, reduce”). This involves e.g. the solution of the linear(-ized) equations in each time step where the solution process of the iterative preconditioned conjugate gradient method reuses and recycles spectral information of linear systems from previous stages. Additionally, a combination of an error controlled spatial adaptivity and an error controlled implicit Runge–Kutta scheme is used to reduce the number of unknowns for the algebraic problems effectively and to avoid unnecessary fine grid resolutions both in space and time. First numerical results for 2D nonlinear magneto-dynamic problems validate the presented approach and its implementation. The space discretization in the numerical examples is done by Lagrangian nodal finite elements but the presented algorithms also work in combination with other discretization schemes for the Maxwell equations such as the Whitney vector finite elements.  相似文献   

3.
We study spatially semidiscrete and fully discrete two-scale composite finite element method for approximations of the nonlinear parabolic equations with homogeneous Dirich-let boundary conditions in a convex polygonal domain in the plane.This new class of finite elements,which is called composite finite elements,was first introduced by Hackbusch and Sauter[Numer.Math.,75(1997),pp.447-472]for the approximation of partial differential equations on domains with complicated geometry.The aim of this paper is to introduce an efficient numerical method which gives a lower dimensional approach for solving par-tial differential equations by domain discretization method.The composite finite element method introduces two-scale grid for discretization of the domain,the coarse-scale and the fine-scale grid with the degrees of freedom lies on the coarse-scale grid only.While the fine-scale grid is used to resolve the Dirichlet boundary condition,the dimension of the finite element space depends only on the coarse-scale grid.As a consequence,the resulting linear system will have a fewer number of unknowns.A continuous,piecewise linear composite finite element space is employed for the space discretization whereas the time discretization is based on both the backward Euler and the Crank-Nicolson methods.We have derived the error estimates in the L∞(L2)-norm for both semidiscrete and fully discrete schemes.Moreover,numerical simulations show that the proposed method is an efficient method to provide a good approximate solution.  相似文献   

4.
We present a fully implicit finite difference method for the unsteady incompressible Navier-Stokes equations. It is based on the one-step θ-method for discretization in time and a special coordinate splitting (called vectorial operator splitting) for efficiently solving the nonlinear stationary problems for the solution at each new time level. The resulting system is solved in a fully coupled approach that does not require a boundary condition for the pressure. A staggered arrangement of velocity and pressure on a structured Cartesian grid combined with the fully implicit treatment of the boundary conditions helps us to preserve the properties of the differential operators and thus leads to excellent stability of the overall algorithm. The convergence properties of the method are confirmed via numerical experiments.  相似文献   

5.
In this study, both the dual reciprocity boundary element method and the differential quadrature method are used to discretize spatially, initial and boundary value problems defined by single and system of nonlinear reaction–diffusion equations. The aim is to compare boundary only and a domain discretization method in terms of accuracy of solutions and computational cost. As the time integration scheme, the finite element method is used achieving solution in terms of time block with considerably large time steps. The comparison between the dual reciprocity boundary element method and the differential quadrature method solutions are made on some test problems. The results show that both methods achieve almost the same accuracy when they are combined with finite element method time discretization. However, as a method providing very good accuracy with considerably small number of grid points differential quadrature method is preferrable.  相似文献   

6.
Methodology for development of compact numerical schemes by the practical finite‐analytic method (PFAM) is presented for spatial and/or temporal solution of differential equations. The advantage and accuracy of this approach over the conventional numerical methods are demonstrated. In contrast to the tedious discretization schemes resulting from the original finite‐analytic solution methods, such as based on the separation of variables and Laplace transformation, the practical finite‐analytical method is proven to yield simple and convenient discretization schemes. This is accomplished by a special universal determinant construction procedure using the general multi‐variate power series solutions obtained directly from differential equations. This method allows for direct incorporation of the boundary conditions into the numerical discretization scheme in a consistent manner without requiring the use of artificial fixing methods and fictitious points, and yields effective numerical schemes which are operationally similar to the finite‐difference schemes. Consequently, the methods developed for numerical solution of the algebraic equations resulting from the finite‐difference schemes can be readily facilitated. Several applications are presented demonstrating the effect of the computational molecule, grid spacing, and boundary condition treatment on the numerical accuracy. The quality of the numerical solutions generated by the PFAM is shown to approach to the exact analytical solution at optimum grid spacing. It is concluded that the PFAM offers great potential for development of robust numerical schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

7.
The mixed finite element method for approximately solving flow equations in porous media has received a good deal of attention in the literature. The main idea is to solve for the head/pressure and fluid velocity (Darcy velocity) simultaneously to obtain a higher order approximation of the fluid velocity. In the case of a diagonal transmissivity tensor the algebraic equations resulting from the discretization can be reduced to a system of algebraic equations for the head/pressure variable alone. This reduction results in a smaller number of unknows to be solved for in an iterative method such as preconditioned conjugate gradient method. The fluid velocity is then obtained from an algebraic relationship. In the case of full transmissivity tensor, the algebraic reduction is more difficult. This paper investigates some algorithms resulting from the modification of the mixed finite element that take advantage of the mixed finite element method for the diagonal tensor case. The resulting schemes are more efficient implementations that maintain the same order of accuracy as the original schemes. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

9.
A cascadic multigrid algorithm for semilinear elliptic problems   总被引:12,自引:0,他引:12  
Summary. We propose a cascadic multigrid algorithm for a semilinear elliptic problem. The nonlinear equations arising from linear finite element discretizations are solved by Newton's method. Given an approximate solution on the coarsest grid on each finer grid we perform exactly one Newton step taking the approximate solution from the previous grid as initial guess. The Newton systems are solved iteratively by an appropriate smoothing method. We prove that the algorithm yields an approximate solution within the discretization error on the finest grid provided that the start approximation is sufficiently accurate and that the initial grid size is sufficiently small. Moreover, we show that the method has multigrid complexity. Received February 12, 1998 / Revised version received July 22, 1999 / Published online June 8, 2000  相似文献   

10.
In this paper, we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by $H^{1}$-Galerkin mixed finite element methods. We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization, and backward Euler scheme for temporal discretization. Firstly, a priori error estimates and some superclose properties are derived. Secondly, a two-grid scheme is presented and its convergence is discussed. In the proposed two-grid scheme, the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy. Finally, a numerical experiment is implemented to verify theoretical results of the proposed scheme. The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice $h=H^2$.  相似文献   

11.
The computation of the nonlinear motion of large structures with implicit time integration schemes is costly. In each time step a large system of linear equations needs to be solved several times. In finite element models often a fine discretization is necessary to represent the geometry and to yield accurate results for the stress field. But from experience it is known that only a small number of degrees of freedom is sufficient to account for the dominant parts of a dynamic motion. Similar to modal decomposition, methods were developed to reduce the number of degrees of freedoms in nonlinear problems. Even though it is not possible to decompose the motion into decoupled modes, a reduction of the number of degrees of freedom yields less computational effort in many cases. The choice of appropriate basis vectors is important. Often used are load-dependent ‘Ritz’ vectors, which should be updated during the computation to yield sufficient accuracy. Dominant modes, computed by a proper orthogonal decomposition of a previous calculation can be used for repeated analyses of the same system with different loads. Significant time savings can be achieved with reduction methods. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Many of the different numerical techniques in the partial differential equations framework for solving option pricing problems have employed only standard second-order discretization schemes. A higher-order discretization has the advantage of producing low size matrix systems for computing sufficiently accurate option prices and this paper proposes new computational schemes yielding high-order convergence rates for the solution of multi-factor option problems. These new schemes employ Galerkin finite element discretizations with quadratic basis functions for the approximation of the spatial derivatives in the pricing equations for stochastic volatility and two-asset option problems and time integration of the resulting semi-discrete systems requires the computation of a single matrix exponential. The computations indicate that this combination of high-order finite elements and exponential time integration leads to efficient algorithms for multi-factor problems. Highly accurate European prices are obtained with relatively coarse meshes and high-order convergence rates are also observed for options with the American early exercise feature. Various numerical examples are provided for illustrating the accuracy of the option prices for Heston’s and Bates stochastic volatility models and for two-asset problems under Merton’s jump-diffusion model.  相似文献   

13.
This article reports a numerical discretization scheme, based on two‐dimensional integrated radial‐basis‐function networks (2D‐IRBFNs) and rectangular grids, for solving second‐order elliptic partial differential equations defined on 2D nonrectangular domains. Unlike finite‐difference and 1D‐IRBFN Cartesian‐grid techniques, the present discretization method is based on an approximation scheme that allows the field variable and its derivatives to be evaluated anywhere within the domain and on the boundaries, regardless of the shape of the problem domain. We discuss the following two particular strengths, which the proposed Cartesian‐grid‐based procedure possesses, namely (i) the implementation of Neumann boundary conditions on irregular boundaries and (ii) the use of high‐order integration schemes to evaluate flux integrals arising from a control‐volume discretization on irregular domains. A new preconditioning scheme is suggested to improve the 2D‐IRBFN matrix condition number. Good accuracy and high‐order convergence solutions are obtained. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
Extrapolated two-step backward difference (BDF2) in time and finite element in space discretization for the unsteady penetrative convection model is analyzed. Penetrative convection model employs a nonlinear equation of state making the problem more nonlinear. Optimal order error estimates are derived for the semi-discrete finite element spatial discretization. Two time discretization schemes based on linear extrapolation are proposed and analyzed, namely a coupled and a decoupled scheme. In particular, we show that although both schemes are unconditionally nonlinearly stable, the decoupled scheme converges unconditionally whereas coupled scheme requires that the time step be sufficiently small for convergence. These time discretization schemes can be implemented efficiently in practice, saving computational memory. Numerical computations and numerical convergence checks are presented to demonstrate the efficiency and the accuracy of the schemes.  相似文献   

15.
The geometry of the domain −S2, causes difficulty in solving the Laplace-Beltrami Equation, for example, in discretization for the differential equation. To overcome this problem, we study a numerical method, which is based on the finite element approximation with a hierarchical refinement of icosahedron for the grid. We construct a geometrically intrinsic base vector field for the Galerkin approximation. In this way, no artificial poles are introduced, and the numerical grids are distributed more evenly. We use radial projection to map the curved triangle onto a flat one, so that existing quadrature schemes can be applied for the numerical integration. The resulting system of linear algebraic equations is solved by using a conjugate gradient method. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
In this article, a new compact difference scheme is proposed in exponential form to solve two-dimensional unsteady nonlinear Burgers' and Navier-Stokes equations of motion in polar cylindrical coordinates by using half-step discretization. At each time level by using only nine grid points in space, the proposed scheme gives accuracy of order four in space and two in time. The method is directly applicable to the equations having singularities at boundary points. Stability analysis is explained in detail and many benchmark problems like Burgers', Navier-Stokes and Taylor-vortex problems in polar cylindrical coordinates are solved to verify the accuracy and efficiency of the scheme.  相似文献   

17.
Nine‐point fourth‐order compact finite difference scheme, central difference scheme, and upwind difference scheme are compared for solving the two‐dimensional convection diffusion equations with boundary layers. The domain is discretized with a stretched nonuniform grid. A grid transformation technique maps the nonuniform grid to a uniform one, on which the difference schemes are applied. A multigrid method and a multilevel preconditioning technique are used to solve the resulting sparse linear systems. We compare the accuracy of the computed solutions from different discretization schemes, and demonstrate the relative efficiency of each scheme. Comparisons of maximum absolute errors, iteration counts, CPU timings, and memory cost are made with respect to the two solution strategies. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 379–394, 2000  相似文献   

18.
The time‐dependent Stokes problem is solved using continuous, piecewise linear finite elements and a classical stabilization procedure. Four order‐one methods are proposed for the time discretization. The first one is nothing but the Euler backward scheme and requires a large linear system involving the velocity and pressure unknowns to be solved. The other three schemes allow velocity and pressure computations to be decoupled, namely the pressure‐matrix method, a method based on an inexact LU factorization, and an operator splitting method. Stability and condition number estimates are derived. Numerical experiments in two space dimensions confirm the theoretical predictions. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:632–656, 2001  相似文献   

19.
We introduce a new discontinuous Galerkin approach for time integration. On the basis of the method of weighted residual, numerical quadratures are employed in the finite element time discretization to account for general nonlinear ordinary differential equations. Many different conditions, including explicit, implicit, and symplectic conditions, are enforced for the test functions in the variational analysis to obtain desirable features of the resulting time‐stepping scheme. The proposed discontinuous Galerkin approach provides a unified framework to derive various time‐stepping schemes, such as low‐order one‐step methods, Runge–Kutta methods, and multistep methods. On the basis of the proposed framework, several explicit Runge–Kutta methods of different orders are constructed. The derivation of symplectic Runge–Kutta methods has also been realized. The proposed framework allows the optimization of new schemes in terms of several characteristics, such as accuracy, sparseness, and stability. The accuracy optimization is performed on the basis of an analytical form of the error estimation function for a linear test initial value problem. Schemes with higher formal order of accuracy are found to provide more accurate solutions. We have also explored the optimization potential of sparseness, which is related to the general compressive sensing in signal/imaging processing. Two critical dimensions of the stability region, that is, maximal intervals along the imaginary and negative real axes, are employed as the criteria for stability optimization. This gives the largest Courant–Friedrichs–Lewy time steps in solving hyperbolic and parabolic partial differential equations, respectively. Numerical experiments are conducted to validate the optimized time‐stepping schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号