首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4,6‐Tris(pyridin‐4‐yl)‐1,3,5‐triazine (tpt), as an organic molecule with an electron‐deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three‐dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N‐dimethylacetamide–methanol mixed‐solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ3‐2,4,6‐tris(pyridin‐4‐yl)‐1,3,5‐triazine‐κ3N2:N4:N6], [Cd(NO3)2(C18H12N6)]n, which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3? anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the tpt ligand.  相似文献   

2.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

3.
The single crystal X‐ray analysis data of the new hepta‐coordinate cadmium(II) complex of N,N‐dimethyl‐N‐(4‐pyridyl)amine (DMPA), [Cd(DMPA)3(NO2)2]·0.5H2O, shows that the coordination environment around the CdII is pentagonal bipyramidal. Furthermore, self‐assembly of this complex as molecular squares that interlink via π–π stacking interactions is observed. This network contains voids that are filled by water molecules.  相似文献   

4.
A new 3D hemidirected mixed‐ligand lead(II) coordination polymer with the ligand 1,2‐di(4‐pyridyl)ethane bpa) and the two metal coordinated anions nitrate and thiocyanate, [Pb2(bpa)2(SCN)3(NO3)]n ( 1 ), has been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The single crystal X‐ray data of compound 1 show that the complex is a three‐dimensional coordination polymer with two different Pb atoms with stereoactive electron lone pairs and six‐ and five‐coordinate hemidirected geometries, respectively.  相似文献   

5.
The title compound, [Mn(NCS)2(C18H12N6)2(CH4O)2], con­tains a centrosymmetric octahedral MnII centre and three pairs of trans‐coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (tpt) ligand. Intermolecular π–π stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a three‐dimensional network.  相似文献   

6.
Two new mixed‐anion zinc(II) and cadmium(II) complexes of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine (PDPT) ligand, [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)], have been synthesized and characterized by elemental analysis, IR‐ and 1H NMR spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six with four N‐donor atoms from two “PDPT” ligand and two of the anionic ligands, ZnN4ClOperchlorate, CdN4OnitrateOperchlorate. Self‐assembly of these compounds in the solid state via ππ‐stacking interactions is discussed.  相似文献   

7.
The zinc(II) pseudohalide complexes {[Zn(L334)(SCN)2(H2O)](H2O)2}n ( 1 ) and [Zn(L334)(dca)2]n ( 2 ) were synthesized and characterized using the ligand 3,4‐bis(3‐pyridyl)‐5‐(4‐pyridyl)‐1,2,4‐triazole (L334) and ZnCl2 in presence of thiocyanate (SCN) and dicynamide [dca, N(CN)2] respectively. Single‐crystal X‐ray structural analysis revealed that the central ZnII atoms in both complexes have similar octahedral arrangement. Compound 1 has a 2D sheet structure bridged by bidentate L334 and double μN,S‐thiocyanate anions, whereas complex 2 , incorporating with two monodentate dicynamide anions, displays a two‐dimensional coordination framework bridged by tetradentate L334 ligand. Structural analysis demonstrated that the influence of pseudohalide anions plays an important role in determining the resultant structure. Both complexes were characterized by IR spectroscopy, microanalysis, and powder X‐ray diffraction techniques. In addition, the solid fluorescence and thermal stability properties of both complexes were investigated.  相似文献   

8.
A lead(II) complex with 2,3,5,6‐tetra(2‐pyridyl)pyrazine (TPPZ), nitrate, and perchlorate ligands has been synthesized and characterized by CHN elemental analysis and IR and 207Pb NMR spectroscopy. The single crystal X‐ray data of the [Pb2(μ‐TPPZ)2(NO3)2(ClO4)2] compound show that the complex is a one‐dimensional coordination polymer and that the Lead atom has a less‐common, ten‐coordinate holodirected geometry.  相似文献   

9.
Three copper(II) coordination polymers (CuCPs), namely, [Cu0.5(1,4‐bib)(SO4)0.5]n ( 1 ), {[Cu(1,3‐bib)2(H2O)] · SO4 · H2O}n ( 2 ), and [Cu(bpz)(SO4)0.5]n ( 3 ), were assembled from the reaction of three N‐donors [1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and Hbpz = 3‐(2‐pyridyl)pyrazole] with copper sulfate under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Structure analyses reveal that complex 1 is a 3D 6‐connected {412 · 63}‐ pcu net, complex 2 is a fourfold 3D 4‐connected 66‐ dia net, whereas complex 3 is a 1D snake‐like chain, which further expanded into 3D supramolecular architectures with the help of C–H ··· O hydrogen bonds. Moreover, the photocatalytic tests demonstrate that the obtained CuCPs are photocatalysts in the degradation of MB with the efficiency is 86.4 % for 1 , 75.3 % for 2 , and 91.3 % for 3 after 2 h, respectively.  相似文献   

10.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

11.
A series of iridium‐ and rhodium‐based hexanuclear organometallic cages containing 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone, 9,10‐dihydroxy‐1,4‐anthraquinone, and 6,11‐dihydroxynaphthacene‐5,12‐dione ligands were synthesized from the self‐assembly of the corresponding molecular “clips” and 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine ligands in good yields. These organometallic cages can form inclusion systems with a wide variety of π‐donor substrates, including coronene, pyrene, [Pt(acac)2], and hexamethoxytriphenylene. The 1:1 complexation of the resulting supramolecular assemblies was confirmed by 1H NMR spectroscopy. Large complexation shifts (Δδ>1 ppm) were observed in the 1H NMR spectra of guests in the presence of cage [Cp*6M6(μ‐DHNA)3(tpt)2](OTf)6 ( 6a ; M=Ir, tpt=2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine). The formation of discrete 1:1 donor–acceptor complexes, pyrene ?6 b (M=Rh), coronene ?6 a , coronene ?6 b , and [Pt(acac)2] ?6 a was confirmed by their single‐crystal X‐ray analyses. In these systems, the most important driving force for the formation of guest–host complexes is clearly the donor–acceptor π???π stacking interaction, including charge‐transfer interactions between the electron‐donating and electron‐accepting aromatic components. These structures provide compelling evidence for the existence of strong attractive forces between the electron‐deficient triazine core and electron‐rich guest. The results presented here may provide useful guidance for designing artificial receptors for functional biomolecules.  相似文献   

12.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

13.
The novel high nitrogen‐containing energetic complex [Cd(DAT)6](NO3)2 was synthesized by reaction of Cd(NO3)2·6H2O with 1,5‐diamino‐tetrazole (DAT). It was characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction analysis. The central Cd2+ ion is coordinated by six nitrogen atoms from six DAT ligand molecules to form a hexacoordinate distorted octahedral compound. The [Cd(DAT)6](NO3)2 molecules are linked together through two types of hydrogen bonds thus forming a stable three‐dimensional net structure. The thermal decomposition mechanism of [Cd(DAT)6](NO3)2 was investigated by DSC and TG/DTG analyses and FT‐IR spectroscopy. The kinetic parameters of the exothermic process were studied by using Kissinger’s and OzawaDoyle’s methods.  相似文献   

14.
The reaction of N‐(2‐pyridyl)carbonylaniline (L) with Zn(NO3)2, CdCl2, and Hg(SCN)2 gives the following complexes: [Zn(L)2](NO3)2, [Cd(L)2Cl2], and [Hg(L)(SCN)2]. The new complexes were characterized by elemental analyses and IR‐, 1H‐, 13C‐NMR spectroscopy. The crystal structure of the [Hg(L)(SCN)2] was determined by single crystal X‐ray analysis. The monomeric complex is built up of a Hg(SCN)2 unit with one N‐(2‐pyridyl)carbonylaniline (L) ligand coordinated to the Hg atom via the ring pyridinic nitrogen atom and the carbonyl oxygen atom forming a five‐membered chelate ring. The Hg atom has a distorted tetrahedral environment. There is π‐π stacking interaction between the parallel aromatic rings belonging to adjacent chain as planar species in which the mean molecular planes are close to parallel and separated by a distance of ~ 3.5Å, close to that of the planes in graphite. The coordinated N‐(2‐pyridyl)carbonylaniline (L) molecule is involved in hydrogen bonding acting as hydrogen‐bond donors with S and N atoms from SCN ligand as potential hydrogen‐bond acceptors. There is a shortest intermolecular contacts between the S and N atoms. The hydrogen bonding and shortest intermolecular contacts between the S and N atoms yields infinite chains parallel to the crystallographic vector c. Each molecule is bonded to two neighbors.  相似文献   

15.
In the title compound, [Zn(SO4)(C18H12N6)(H2O)2]·2H2O, the metal complex is monomeric, with an octahedral ZnII centre coordinated by the tridentate ligand 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tpt), two aqua mol­ecules and a monodentate sulfate ion. A complex hydrogen‐bonding scheme is built up out of the profuse availability of donors and acceptors (O—H⋯O/N and C—H⋯O) which, in addition to π–π interactions between tpt groups, define a three‐dimensional assembly.  相似文献   

16.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   

17.
The reaction of 4‐amino‐1, 2, 4‐triazin‐3(2H)‐thione‐5‐one (ATTO, 1 ) with [Cu(PPh3)2]NO3 in ethanol led to the complex [Cu(PPh3)2(ATTO)]NO3 ( 2 ). 2 was characterized by elemental analyses, IR, 1H NMR and Raman spectroscopy. A single‐crystal X‐ray diffraction of compound 2 revealed that ATTO acts as a bidentate ligand via its nitrogen and sulfur atoms. Crystal data for 2 at 20 °C: space group P21/n with a = 975.7(1), b = 1533.5(2), c = 2504.2(3) pm, β = 92.25(1)°, Z = 4, R1 = 0.0632.  相似文献   

18.
Two coordination polymers, [Cd(Heidc)(bpp)]n ( 1 ) and [Zn3 (eidc)2(bpp)(H2O)2] · 2H2O}n ( 2 ) (H3eidc = 2‐ethyl‐4,5‐imidazole dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane) were hydrothermally synthesized and characterized by elemental analysis, IR, spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 features a 2D layer formed by C–H ··· π stacking interactions between adjacent chains, whereas compound 2 shows a 3D (83)2(85.10)‐tfc framework constructed of the 2D (6,3) layer. The result demonstrates that the central metal atoms play a key role in governing the coordination motifs. Moreover, solid‐state properties such as thermal stabilities and photoluminescence of 1 and 2 were also investigated.  相似文献   

19.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

20.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号