首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106–107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105–106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.  相似文献   

2.
The ethanolic extracts of red beet (Beta vulgaris L.) hairy root were used to investigate the removal of color and improvement of biological activity for enhanced industrial applications. The extracts were exposed to gamma rays ranging from 2.5 to 30 kGy. The red beet hairy root is composed of two major red-colorants, betanin and isobetanin. Gamma ray radiation at 5 kGy remarkably reduced the levels of the major colorants by 94% and the reddish color was eliminated by doses greater than 10 kGy. Color removal was likely due to the gamma ray radiolysis of ethanol. Although details on the mechanism responsible for the decay of the chromophore have not been entirely determined, our results suggest that the free radicals that are produced during this process are capable of destroying the chromophore group in isobetanin, thus bleaching the substrate solution. In spite of the degradation of the major colorants, the biological activities of constituents of the extract such as DPPH radical scavenging and tyrosinase inhibition were negligibly affected by the gamma ray radiation up to 20 kGy. The antioxidant activity was 92.7% in control samples and 90.0–92.0% in irradiated samples (2.5–20 kGy), and a slight decrease to 87.5% was observed for gamma ray radiation at 30 kGy. In addition, tyrosinase inhibition activity has also the same pattern; the activity is slightly increased from 50.7% of control to 49.1–52.8% of irradiated samples (2.5–20 kGy) with a 46.8% at 30 kGy.  相似文献   

3.
Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.  相似文献   

4.
Chitosan films were prepared by dissolving 1% (w/v) chitosan powder in 2% (w/v) aqueous acetic acid solution. Chitosan films were prepared by solution casting. The values of puncture strength (PS), viscoelasticity coefficient and water vapor permeability (WVP) of the films were found to be 565 N/mm, 35%, and 3.30 g mm/m2 day kPa, respectively. Chitosan solution was exposed to gamma irradiation (0.1–5 kGy) and it was revealed that PS values were reduced significantly (p≤0.05) after 1 kGy dose and it was not possible to form films after 5 kGy. Monomer, 2-hydroxyethyl methacrylate (HEMA) solution (0.1–1%, w/v) was incorporated into the chitosan solution and the formulation was exposed to gamma irradiation (0.3 kGy). A 0.1% (w/v) HEMA concentration at 0.3 kGy dose was found optimal-based on PS values for chitosan grafting. Then radiation dose (0.1–5 kGy) was optimized for HEMA grafting. The highest PS values (672 N/mm) were found at 0.7 kGy. The WVP of the grafted films improved significantly (p≤0.05) with the rise of radiation dose.  相似文献   

5.
In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0–40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.  相似文献   

6.
This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25–30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.  相似文献   

7.
In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600–1000 ppm)/US (5–20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice.  相似文献   

8.
Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.  相似文献   

9.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

10.
Effects of gamma irradiation on nutritional, physiological, physicochemical and sensory properties of the Korean lactic acid fermented vegetable, Kimchi, were investigated. The composition of amino acids and organic acids in Kimchi were not influenced by gamma irradiation less than 10 kGy. Angiotensine converting enzyme inhibitory, xanthin oxidase inhibitory, electron donating and antimicrobial activity of Kimchi extract were stable up to 10 kGy. There were no significant changes in pH and texture at less than 10 kGy. Color values were influenced at 10 kGy of gamma irradiation, and resulted in the increase of L*- and reduction of a*-value. About 90% of panelists identified a sensory difference between non-irradiated and 10 kGy-irradiated sample, and Kimchi irradiated at 10 kGy had lower scores in acceptability than those of the control or irradiated at 2.5 and 5 kGy.  相似文献   

11.
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4′-glucoside (Q4′G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4′G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1–256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.  相似文献   

12.
Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1?25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).  相似文献   

13.
This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.  相似文献   

14.
PP1084 protein was exposed to gamma irradiation ranging from 5 to 500 kGy. Native PAGE showed minor structural changes in PP1084 at 5 kGy, and major structural changes at >15 kGy. Size-exclusion chromatography (SEC) showed the formation of a new shoulder peak when the protein was irradiated with 15 and 30 kGy, and a double peak appeared at 100 kGy. The results of PAGE and SEC imply that PP1084 protein is degraded by gamma irradiation, with simultaneous oligomerization. PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation, and then, decreased in a dose-dependent manner with increasing gamma irradiation. However, the peroxidase activity significantly decreased following exposure to all intensities of gamma irradiation. The improvement of chaperone activity using gamma irradiation might be promoted by the oligomeric structures containing covalently cross-linked amino acids. Consequently, PP1084 modification using gamma irradiation could elevate chaperone activity by about 3–4 folds compared to the non-irradiated protein.  相似文献   

15.
Originally, the VDmax approach was developed to substantiate a selected sterilization dose of 25 kGy. Thereafter, computer and field evaluations demonstrated the value of the approach for substantiation of selected sterilization doses less than 25 kGy. Verification of the use of the approach for substantiation of sterilization doses in excess of 25 kGy is now needed.The results of the computer evaluations conducted on the VDmax approach with 35 challenge microbial populations at sterilization doses of 30 and 35 kGy generally gave outcomes consistent with those observed previously, namely, safe and unambiguous. Outcomes perceived as unsafe have been shown to be a peculiarity of the manner of assembling challenge microbial populations. Field evaluations involving substantiation of four selected sterilization doses greater than 25 kGy and associated sterilization dose auditing gave acceptable outcomes. The present findings further affirm the value and reliability of the VDmax approach.  相似文献   

16.
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ∼160 kGy total dose, and does not depend on the protein concentration in the range 0.01–5 mM.  相似文献   

17.
Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween®-80. Puncture strength (PS), puncture deformation (PD) and water vapor permeability (WVP) of the films were found to be 147 N/mm, 3.46 mm, and 6.34 g mm/m2 day kPa, respectively. The monomer, 2-hydroxyethyl methacrylate (HEMA) (0.1–1%, w/w) was incorporated into the MC-based solution and films were prepared by casting. Films were then exposed to gamma radiation (5–25 kGy) and it revealed that 1% HEMA containing films showed the highest PS values (282 N/mm at 10 kGy). Silane monomer (3-aminopropyl tri-ethoxy silane) (0.1–1%, w/w) was also added into the MC-based films and were found to improve the strength of the films significantly. In comparison between HEMA and silane treatment onto MC-based films, it was observed that silane performed better strength and barrier properties. Surface morphology of the monomer treated films was examined by scanning electron microscopy and suggested better appearance than MC-based film.  相似文献   

18.
Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.  相似文献   

19.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

20.
Food packaging polymers, polystyrene (PS), polycarbonate (PC), polyamide-6 (PA-6), and polyvinylchloride (PVC), were irradiated with dose in the range 5–200 kGy. The quantities of corresponding monomer residues (styrene monomer, bisphenol-A, ε-caprolactam, vinyl chloride) released from target materials were analyzed using a SIM mode of GC/MSD. Styrene monomer in PS showed a slight increase from 740 to 777 ppm at 5–30 kGy and then decreased as the dose increased from 30 to 200 kGy. Bisphenol-A in PC was dose independent at the low doses, 5, 10 and 30 kGy, but its level increased from 173 to 473 ppm at 30 kGy and thereafter remained unchanged through 200 kGy. ε-Caprolactam in PA-6 was also dose independent, in the range of 5–200 kGy, but its level (122–164 ppm) was found to be higher than those (71 ppm) of non-irradiated sample. As for PVC, the quantity of vinyl chloride tended to increase from 8 to 18 ppm at 5–200 kGy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号