首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this article, we study a type of nonlinear fractional boundary value problem with integral boundary conditions. By constructing an associated Green's function, applying spectral theory and using fixed point theory on cones, we obtain criteria for the existence, multiplicity and nonexistence of positive solutions.  相似文献   

2.
In this paper, we deal with a class of pseudoparabolic problems with integral boundary conditions. We will first establish an a priori estimate. Then, we prove the existence, uniqueness and continuous dependence of the solution upon the data. Finally, some extensions of the problem are given.  相似文献   

3.
In this paper we investigate the existence of positive solutions of nonlocal second-order boundary value problems with integral boundary conditions.  相似文献   

4.
In this paper, Lyapunov‐type inequalities are derived for a class of fractional boundary value problems with integral boundary conditions. As an application, we obtain a lower bound for the eigenvalues of corresponding equations.  相似文献   

5.
In this paper we develop and analyze a bootstrapping algorithm for the extraction of potentials and arbitrary derivatives of the Cauchy data of regular three-dimensional second order elliptic boundary value problems in connection with corresponding boundary integral equations. The method rests on the derivatives of the generalized Green's representation formula, which are expressed in terms of singular boundary integrals as Hadamard's finite parts. Their regularization, together with asymptotic pseudohomogeneous kernel expansions, yields a constructive method for obtaining generalized jump relations. These expansions are obtained via composition of Taylor expansions of the local surface representation, the density functions, differential operators and the fundamental solution of the original problem, together with the use of local polar coordinates in the parameter domain. For boundary integral equations obtained by the direct method, this method allows the recursive numerical extraction of potentials and their derivatives near and up to the boundary surface.

  相似文献   


6.
研究了含积分边界条件的分数阶微分方程的边值问题,首先给出格林函数及性质,其次将问题转化为一个等价的积分方程,最后应用Krasnoselkii及Leggett-Williams不动点定理得到了一个及多个正解的存在性,推广了以往的结果.  相似文献   

7.
In this paper, we consider the existence of positive solutions for a class of nonlinear boundary-value problem of fractional differential equations with integral boundary conditions. Our analysis relies on known Guo–Krasnoselskii fixed point theorem.  相似文献   

8.
In this paper, we consider the existence and multiplicity of positive solutions to some class of boundary value problem for fractional differential equation of high order. Our analysis relies on the Krasnoselskii??s fixed point theorem in a cone.  相似文献   

9.
In this work we propose and analyze numerical methods for the approximation of the solution of Helmholtz transmission problems in two or three dimensions. This kind of problems arises in many applications related to scattering of acoustic, thermal and electromagnetic waves. Formulations based on boundary integral methods are powerful tools to deal with transmission problems in unbounded media. Different formulations using boundary integral equations can be found in the literature. We propose here new symmetric formulations based on a paper by Martin Costabel and Ernst P. Stephan (1985), that uses the Calderón projector for the interior and exterior problems to develop closed expressions for the interior and exterior Dirichlet-to-Neumann operators. These operators are then matched to obtain an integral system that is equivalent to the Helmholtz transmission problem and uses Cauchy data on the transmission boundary as unknowns. We show how to simplify the aspect and analysis of the method by employing an additional mortar unknown with respect to the ones used in the original paper, writing it in an appropriate way to devise Krylov type iterations based on the separate Dirichlet-to-Neumann operators.  相似文献   

10.
In this work we present a singular function boundary integral method for elliptic problems with boundary singularities. In this method, the approximation is constructed from the truncated asymptotic expansion for the solution near the singular point and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. The resulting discrete problem is posed and solved on the boundary of the domain, away from the point of singularity. We are able to show that the method approximates the generalized stress intensity factors, i.e. the coe cients in the asymptotic expansion, at an exponential rate. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The resolution of boundary value problems by integral equations is usually based on isomorphisms between the solution of the boundary value problem and boundary data. Using an abstract Green formula in a Hilbert space framework, we prove these isomorphisms. Many applications are given, like the Dirichlet and Neumann problems for the Laplace operator, as well as the clamped and free plate problems in the plane.  相似文献   

12.
In this article, we analyze the singular function boundary integral method (SFBIM) for a two‐dimensional biharmonic problem with one boundary singularity, as a model for the Newtonian stick‐slip flow problem. In the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. By means of Green's theorem, the resulting discretized equations are posed and solved on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is increased. Our theoretical results are illustrated through a numerical experiment. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

13.
In this paper, we consider the properties of Green’s function for a class of nonlinear Caputo fractional differential equations with integral boundary conditions by constructing an available integral operator. By means of well-known fixed point theorems and lower and upper solutions method, some new existence and nonexistence criteria of single or multiple positive solutions for fractional differential equation boundary value problems are established. As applications, some interesting examples are presented to illustrate the main results.  相似文献   

14.
In this paper we extend some recent results on the stability of the Johnson–Nédelec coupling of finite and boundary element methods in the case of boundary value problems. In Of and Steinbach (Z Angew Math Mech 93:476–484, 2013), Sayas (SIAM J Numer Anal 47:3451–3463, 2009) and Steinbach (SIAM J Numer Anal 49:1521–1531, 2011), the case of a free-space transmission problem was considered, and sufficient and necessary conditions are stated which ensure the ellipticity of the bilinear form for the coupled problem. The proof was based on considering the energies which are related to both the interior and exterior problem. In the case of boundary value problems for either interior or exterior problems, additional estimates are required to bound the energy for the solutions of related subproblems. Moreover, several techniques for the stabilization of the coupled formulations are analysed. Applications involve boundary value problems with either hard or soft inclusions, exterior boundary value problems, and macro-element techniques.  相似文献   

15.
In this paper, we study the solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations with fractional derivative under resonant conditions. Firstly, the kernel function is presented through the Laplace transform and the properties of the kernel function are obtained. And then, some new results on the solvability for the boundary value problem are established by using Mawhin''s coincidence degree theory. Finally, two examples are presented to illustrate the applicability of our main results.  相似文献   

16.
In this paper we investigate integral boundary value problems for fourth order differential equations with deviating arguments. We discuss our problem both for advanced or delayed arguments. We establish sufficient conditions under which such problems have positive solutions. To obtain the existence of multiple (at least three) positive solutions, we use a fixed point theorem due to Avery and Peterson. An example is also included to illustrate that corresponding assumptions are satisfied. The results are new.  相似文献   

17.
In this paper, the upper and lower solution method and Schauder’s fixed point theorem are employed in the study of boundary value problems for a class of second-order impulsive ordinary differential equations with nonlinear boundary conditions. We prove the existence of solutions to the problem under the assumption that there exist lower and upper solutions associated with the problem.  相似文献   

18.
In this paper, we study a class of integral boundary value problem for fractional order impulsive differential equations, where both the nonlinearity and the impulsive terms contain the fractional order derivatives. By using fixed‐point theorems, the existence results of solution for the boundary value problem are established. Finally, some examples are presented to illustrate the existence results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we investigate the optimal control problem for a class of stochastic Cauchy evolution problems with nonstandard boundary dynamic and control. The model is composed by an infinite dimensional dynamical system coupled with a finite dimensional dynamics, which describes the boundary conditions of the internal system. In other terms, we are concerned with nonstandard boundary conditions, as the value at the boundary is governed by a different stochastic differential equation.  相似文献   

20.
In this paper, boundary integral formulations for a time‐harmonic acoustic scattering‐resonance problem are analyzed. The eigenvalues of eigenvalue problems resulting from boundary integral formulations for scattering‐resonance problems split in general into two parts. One part consists of scattering‐resonances, and the other one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior of the scatterer. The proposed combined boundary integral formulations enable a better separation of the unwanted spectrum from the scattering‐resonances, which allows in practical computations a reliable and simple identification of the scattering‐resonances in particular for non‐convex domains. The convergence of conforming Galerkin boundary element approximations for the combined boundary integral formulations of the resonance problem is shown in canonical trace spaces. Numerical experiments confirm the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号