首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 146 毫秒
1.
A series solution to obtain the effective properties of some elastic composites media having periodically located heterogeneities is described. The method uses the classical expansion along Neuman series of the solution of the periodic elasticity problem in Fourier space, based on the Green's tensor, and exact expressions of factors depending on the shape of the inclusions. Some properties of convergence of the solution are presented, more specifically concerning the elasticity tensor of the reference medium, showing that the convergence occurs even for empty fibers. The solution is extended for rigid inclusions. A comparison is made with previous exact solutions for a fiber composite made of cylindrical fibers with circular cross-sections and with previous estimates. Different examples are presented for new situations concerning the study of fiber composites: composites with elliptic cross-sections and multi-phase fibrous composites.  相似文献   

2.
We propose an asymptotic approach for evaluating effective elastic properties of two-components periodic composite materials with fibrous inclusions. We start with a nontrivial expansion of the input elastic boundary value problem by ratios of elastic constants. This allows to simplify the governing equations to forms analogous to the transport problem. Then we apply an asymptotic homogenization method, coming from the original problem on a multi-connected domain to a so called cell problem, defined on a characterizing unit cell of the composite. If the inclusions' volume fraction tends to zero, the cell problem is solved by means of a boundary perturbation approach. When on the contrary the inclusions tend to touch each other we use an asymptotic expansion by non-dimensional distance between two neighbouring inclusions. Finally, the obtained “limiting” solutions are matched via two-point Padé approximants. As the results, we derive uniform analytical representations for effective elastic properties. Also local distributions of physical fields may be calculated. In some partial cases the proposed approach gives a possibility to establish a direct analogy between evaluations of effective elastic moduli and transport coefficients. As illustrative examples we consider transversally-orthotropic composite materials with fibres of square cross section and with square checkerboard structure. The obtained results are in good agreement with data of other authors.  相似文献   

3.
Variational bounds for the effective behavior of nonlinear composites are improved by incorporating more-detailed morphological information. Such bounds, which are obtained from the generalized Hashin–Shtrikman variational principles, make use of a reference material with the same microstructure as the nonlinear composite. The geometrical information is contained in the effective properties of the reference material, which are explicitly present in the analytical formulae of the nonlinear bounds. In this paper, the variational approach is combined with estimates for the effective properties of the reference composite via the asymptotic homogenization method (AHM), and applied to a hexagonally periodic fiber-reinforced incompressible nonlinear elastic composite, significantly improving some recent results.  相似文献   

4.
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is devel-oped to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implemen-tation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.  相似文献   

5.
This paper deals with the prediction of the effective properties of nonlinear composites. Rather than bounding the effective energy, this work aims at bounding directly the effective stress-strain response, by extending a method originally introduced by Milton and Serkov (J. Mech. Phys. Solids 48 (2000) 1295) and recently refined by Talbot and Willis (Proc. Roy. Soc. 460 (2004) 2705). In this paper, bounding the effective response is achieved by introducing a linear comparison composite with the same micro-geometry as the given nonlinear composite, as Ponte Castañeda (J. Mech. Phys. Solids 39 (1991) 45) did for the energy. It is found that any lower bound for the energy of the linear comparison composite generates a corresponding bound for the stress-strain response of the nonlinear composite. A selection of examples is presented to illustrate the method and compare the bounds obtained with existing results.  相似文献   

6.
The paper addresses the problem of calculating the local fields and effective transport properties and longitudinal shear stiffness of elliptic fiber composite with imperfect interface. The Rayleigh type representative unit cell approach has been used. The micro geometry of composite is modeled by a periodic structure with a unit cell containing multiple elliptic inclusions. The developed method combines the superposition principle, the technique of complex potentials and certain new results in the theory of special functions. An appropriate choice of the potentials provides reducing the boundary-value problem to an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective stiffness tensor has been obtained by analytical averaging the local gradient and flux fields. The convergence of solution has been verified and the parametric study of the model has been performed. The obtained accurate, statistically meaningful results illustrate a substantial effect of imperfect interface on the effective behavior of composite.  相似文献   

7.
The structural theory of short-term microdamage is generalized to a fibrous composite with a microdamageable matrix and physically nonlinear fibers. The basis for the generalization is the stochastic elasticity equations of a fibrous composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a fibrous composite with porous matrix and physically nonlinear fibers constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different components of the composite. Algorithms for computing the microdamage-macrostrain and macrostress-macrostrain relationships are developed. Uniaxial tension curves are plotted for a fibrous composite with linearly hardening fibers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 38–47, January 2006.  相似文献   

8.
A rectangular cell of known boundary conditions is cut out from a medium containing the doubly periodic array of inclusions. The stress and strain relationship of the rectangular cell is obtained by using the classical boundary element methods. By matching the boundary condition requirements, the effective elastic properties of the doubly periodic array of inclusions can then be calculated. Numerical examples from the sub-domain boundary element method and the single domain boundary element method are compared and discussed. However, the present method cannot be readily extended to domains having circular or curved boundary parts.  相似文献   

9.
The paper outlines an approach to the analysis of periodically inhomogeneous composites with imperfect contact between the components. The heat-conduction problem for a particulate composite with an infinite matrix and simple cubic lattices of spherical inclusions is solved. Approximate solutions for the effective heat-conductivity coefficient and local heat fluxes at the microlevel are found. The results are obtained for arbitrary conductivity and volume fractions of the components  相似文献   

10.
Anti-plane and plane-strain, time-harmonic, small-amplitude vibrations of an elastic layer on an elastic half space are considered, superimposed upon a state of finite, uniform stress and strain. A (compressible) elastic material is considered, orthotropic with orthotropy axes aligned parallel and orthogonal both to the layer and the prestress principal directions. A non-uniform mass density is assumed in the layer. A formal long-wave asymptotic solution is derived under the assumptions of high contrast between the stiffnesses of the layer and the half space and between certain prestress components and the current elastic shear modulus.It is shown that (i) the layer asymptotically behaves as a beam subject to transversal and axial vibrations; (ii) the response of the half space can be found in a closed-form, under the assumption of plane wave motion (which becomes consistent when the density of the layer is uniform), otherwise it is represented by a hypersingular integral equation; (iii) if the nonlocality introduced by the hypersingular integral equation is restricted to an influence area of finite extent, the integral can be analytically approximated, so that a Winkler-type spring model representing the half space is rigorously derived. For uniform density of the layer, the constants defining the spring model are given as functions of the prestress and anisotropy parameters of the half space; and, finally, (iv) the asymptotic solution provides new analytical expressions for incremental displacement of the layer, which, compared to the exact numerical solution (also included), are shown to perform quite well, even for values of parameters much beyond the limits imposed by the asymptotic analysis.The asymptotic analysis allows us to explore, for the first time, dynamic properties of a periodic layer bonded to an elastic half space and subject to a uniform prestress state. We find that the system exhibits band gaps (ranges of forbidden frequencies) and that the prestress can be used as a parameter tuning the filtering properties of the structure, an effect which may have important consequences in the design of resonant devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号