首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, we apply a variational discretization proposed by the first author in (Comput. Optim. Appl. 30:45–61, 2005) to Lavrentiev-regularized state constrained elliptic control problems. We extend the results of (Comput. Optim. Appl. 33:187–208, 2006) and prove weak convergence of the adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove error estimates for finite element discretizations of the regularized problem and investigate the overall error imposed by the finite element discretization of the regularized problem compared to the continuous solution of the original problem. Finally we present numerical results which confirm our analytical findings.  相似文献   

2.
In this paper, a priori error estimates for space–time finite element discretizations of optimal control problems governed by semilinear parabolic PDEs and subject to pointwise control constraints are derived. We extend the approach from Meidner and Vexler (SIAM Control Optim 47(3):1150–1177, 2008; SIAM Control Optim 47(3):1301–1329, 2008) where linear-quadratic problems have been considered, discretizing the state equation by usual conforming finite elements in space and a discontinuous Galerkin method in time. Error estimates for controls discretized by piecewise constant functions in time and cellwise constant functions in space are derived in detail and we explain how error estimate for further discretization approaches, e.g., cellwise linear discretization in space, the postprocessing approach from Meyer and R?sch (SIAM J Control Optim 43:970–985, 2004), and the variationally discrete approach from Hinze (J Comput Optim Appl 30:45–63, 2005) can be obtained. In addition, we derive an estimate for a setting with finitely many time-dependent controls.  相似文献   

3.
In this paper we investigate POD discretizations of abstract linear–quadratic optimal control problems with control constraints. We apply the discrete technique developed by Hinze (Comput. Optim. Appl. 30:45–61, 2005) and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from Kunisch and Volkwein (Numer. Math. 90:117–148, 2001; SIAM J. Numer. Anal. 40:492–515, 2002). Finally, we present numerical examples that illustrate the theoretical results.  相似文献   

4.
A derivative free iterative method for approximating a solution of nonlinear least squares problems is studied first in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). The radius of convergence is determined as well as usable error estimates. We show that this method is faster than its Secant analogue examined in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). Numerical example is also provided in this paper.  相似文献   

5.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

6.
Recently, Li et al. (Comput. Optim. Appl. 26:131–147, 2004) proposed a regularized Newton method for convex minimization problems. The method retains local quadratic convergence property without requirement of the singularity of the Hessian. In this paper, we develop a truncated regularized Newton method and show its global convergence. We also establish a local quadratic convergence theorem for the truncated method under the same conditions as those in Li et al. (Comput. Optim. Appl. 26:131–147, 2004). At last, we test the proposed method through numerical experiments and compare its performance with the regularized Newton method. The results show that the truncated method outperforms the regularized Newton method. The work was supported by the 973 project granted 2004CB719402 and the NSF project of China granted 10471036.  相似文献   

7.
A class of stochastic optimal control problems involving optimal stopping is considered. Methods of Krylov (Appl. Math. Optim. 52(3):365–399, 2005) are adapted to investigate the numerical solutions of the corresponding normalized Bellman equations and to estimate the rate of convergence of finite difference approximations for the optimal reward functions.  相似文献   

8.
Conjugate gradient methods are appealing for large scale nonlinear optimization problems, because they avoid the storage of matrices. Recently, seeking fast convergence of these methods, Dai and Liao (Appl. Math. Optim. 43:87–101, 2001) proposed a conjugate gradient method based on the secant condition of quasi-Newton methods, and later Yabe and Takano (Comput. Optim. Appl. 28:203–225, 2004) proposed another conjugate gradient method based on the modified secant condition. In this paper, we make use of a multi-step secant condition given by Ford and Moghrabi (Optim. Methods Softw. 2:357–370, 1993; J. Comput. Appl. Math. 50:305–323, 1994) and propose two new conjugate gradient methods based on this condition. The methods are shown to be globally convergent under certain assumptions. Numerical results are reported.  相似文献   

9.
We consider an elliptic optimal control problem with pointwise bounds on the gradient of the state. To guarantee the required regularity of the state we include the L r -norm of the control in our cost functional with r>d (d=2,3). We investigate variational discretization of the control problem (Hinze in Comput. Optim. Appl. 30:45–63, 2005) as well as piecewise constant approximations of the control. In both cases we use standard piecewise linear and continuous finite elements for the discretization of the state. Pointwise bounds on the gradient of the discrete state are enforced element-wise. Error bounds for control and state are obtained in two and three space dimensions depending on the value of r.  相似文献   

10.
In this paper, we present two new three-step iterative methods for solving nonlinear equations with sixth convergence order. The new methods are obtained by composing known methods of third order of convergence with Newton’s method and using an adequate approximation for the derivative, that provides high order of convergence and reduces the required number of functional evaluations per step. The first method is obtained from Potra-Pták’s method and the second one, from Homeier’s method, both reaching an efficiency index of 1.5651. Our methods are comparable with the method of Parhi and Gupta (Appl Math Comput 203:50–55, 2008). Methods proposed by Kou and Li (Appl Math Comput 189:1816–1821, 2007), Wang et al. (Appl Math Comput 204:14–19, 2008) and Chun (Appl Math Comput 190:1432–1437, 2007) reach the same efficiency index, although they start from a fourth order method while we use third order methods and simpler arithmetics. We prove the convergence results and check them with several numerical tests that allow us to compare the convergence order, the computational cost and the efficiency order of our methods with those of the original methods.  相似文献   

11.
In this note, we prove that the convergence results for vector optimization problems with equilibrium constraints presented in Wu and Cheng (J. Optim. Theory Appl. 125, 453–472, 2005) are not correct. Actually, we show that results of this type cannot be established at all. This is due to the possible lack, even under nice assumptions, of lower convergence of the solution map for equilibrium problems, already deeply investigated in Loridan and Morgan (Optimization 20, 819–836, 1989) and Lignola and Morgan (J. Optim. Theory Appl. 93, 575–596, 1997).  相似文献   

12.
For finding a root of an equation f(x) = 0 on an interval (a, b), we develop an iterative method using the signum function and the trapezoidal rule for numerical integrations based on the recent work (Yun, Appl Math Comput 198:691–699, 2008). This method, so-called signum iteration method, depends only on the signum function sgn(f(x)){\rm{sgn}}\left(f(x)\right) independently of the behavior of f(x), and the error bound of the kth approximation is (b − a)/(2N k ), where N is the number of integration points for the trapezoidal rule in each iteration. In addition we suggest hybrid methods which combine the signum iteration method with usual methods such as Newton, Ostrowski and secant methods. In particular the hybrid method combined with the signum iteration and the secant method is a predictor-corrector type method (Noor and Ahmad, Appl Math Comput 180:167–172, 2006). The proposed methods result in the rapidly convergent approximations, without worry about choosing a proper initial guess. By some numerical examples we show the superiority of the presented methods over the existing iterative methods.  相似文献   

13.
The second-order cone complementarity problem (SOCCP) is an important class of problems containing a lot of optimization problems. The SOCCP can be transformed into a system of nonsmooth equations. To solve this nonsmooth system, smoothing techniques are often used. Fukushima, Luo and Tseng (SIAM J. Optim. 12:436–460, 2001) studied concrete theories and properties of smoothing functions for the SOCCP. Recently, a practical computational method using the smoothed natural residual function to solve the SOCCP was given by Chen, Sun and Sun (Comput. Optim. Appl. 25:39–56, 2003). In the present paper, we propose an algorithm to solve the SOCCP by using the smoothed Fischer-Burmeister function. Some preliminary numerical results are given.  相似文献   

14.
We extend the applicability of the Gauss–Newton method for solving singular systems of equations under the notions of average Lipschitz–type conditions introduced recently in Li et al. (J Complex 26(3):268–295, 2010). Using our idea of recurrent functions, we provide a tighter local as well as semilocal convergence analysis for the Gauss–Newton method than in Li et al. (J Complex 26(3):268–295, 2010) who recently extended and improved earlier results (Hu et al. J Comput Appl Math 219:110–122, 2008; Li et al. Comput Math Appl 47:1057–1067, 2004; Wang Math Comput 68(255):169–186, 1999). We also note that our results are obtained under weaker or the same hypotheses as in Li et al. (J Complex 26(3):268–295, 2010). Applications to some special cases of Kantorovich–type conditions are also provided in this study.  相似文献   

15.
The simplicial algorithm is a kind of branch-and-bound method for computing a globally optimal solution of a convex maximization problem. Its convergence under the ω-subdivision strategy was an open question for some decades until Locatelli and Raber proved it (J Optim Theory Appl 107:69–79, 2000). In this paper, we modify their linear programming relaxation and give a different and simpler proof of the convergence. We also develop a new convergent subdivision strategy, and report numerical results of comparing it with existing strategies.  相似文献   

16.
This paper is devoted to the convergence and stability analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. As soon as a nonlinear scheme can be written as a specific perturbation of a linear and convergent subdivision scheme, we show that if some contractivity properties are satisfied, then stability and convergence can be achieved. This approach is applied to various schemes, which give different new results. More precisely, we study uncentered Lagrange interpolatory linear schemes, WENO scheme (Liu et al., J Comput Phys 115:200–212, 1994), PPH and Power-P schemes (Amat and Liandrat, Appl Comput Harmon Anal 18(2):198–206, 2005; Serna and Marquina, J Comput Phys 194:632–658, 2004) and a nonlinear scheme using local spherical coordinates (Aspert et al., Comput Aided Geom Des 20:165–187, 2003). Finally, a stability proof is given for the multiresolution transform associated to a nonlinear scheme of Marinov et al. (2005).  相似文献   

17.
In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).  相似文献   

18.
In this paper, we propose a new smoothing Broyden-like method for solving nonlinear complementarity problem with P 0 function. The presented algorithm is based on the smoothing symmetrically perturbed minimum function φ(a, b) = min{a, b} and makes use of the derivative-free line search rule of Li et al. (J Optim Theory Appl 109(1):123–167, 2001). Without requiring any strict complementarity assumption at the P 0-NCP solution, we show that the iteration sequence generated by the suggested algorithm converges globally and superlinearly under suitable conditions. Furthermore, the algorithm has local quadratic convergence under mild assumptions. Some numerical results are also reported in this paper.  相似文献   

19.
《Set-Valued Analysis》2008,16(2-3):129-155
We give implicit multifunction results generalizing to multifunctions the Robinson’s implicit function theorem (Robinson, Math Oper Res 16(2):292–309, 1991). To this end, we use parametric error bounds estimates for a suitable function refining the one given in Azé and Corvellec (ESAIM Control Optim Calc Var 10:409–425, 2004). Sharp approximations of the implicit multifunctions are given extending the results of Nachi and Penot (Control Cybernet 35:871–901, 2005). Dedicated to Boris Mordukhovich in honour of his 60th birthday.  相似文献   

20.
We consider a class of unconstrained nonsmooth convex optimization problems, in which the objective function is the sum of a convex smooth function on an open subset of matrices and a separable convex function on a set of matrices. This problem includes the covariance selection problem that can be expressed as an 1-penalized maximum likelihood estimation problem. In this paper, we propose a block coordinate gradient descent method (abbreviated as BCGD) for solving this class of nonsmooth separable problems with the coordinate block chosen by a Gauss-Seidel rule. The method is simple, highly parallelizable, and suited for large-scale problems. We establish global convergence and, under a local Lipschizian error bound assumption, linear rate of convergence for this method. For the covariance selection problem, the method can terminate in O(n3/e){O(n^3/\epsilon)} iterations with an e{\epsilon}-optimal solution. We compare the performance of the BCGD method with the first-order methods proposed by Lu (SIAM J Optim 19:1807–1827, 2009; SIAM J Matrix Anal Appl 31:2000–2016, 2010) for solving the covariance selection problem on randomly generated instances. Our numerical experience suggests that the BCGD method can be efficient for large-scale covariance selection problems with constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号