首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Linear viscoelastic behavior was investigated for aqueous solutions of perfluorooctyl sulfonate (C8F17SO 3; abbreviated as FOS) micelles having a mixture of tetraethylammonium (N+(C2H5)4; TEA) and lithium (Li+) ions as the counter-ions. The solutions had the same FOS concentration (0.1 mol l−1) and various Li+ fractions in the counter-ions, φLi = 0−0.6, and the FOS micelles in these solutions formed threads which further organized into dendritic networks. At T ≤ 15 °C, the terminal relaxation time τ and the viscosity η, governed by thermal scission of the networks, increased with increasing φLi up to 0.55. A further increase of φLi resulted in decreases of τ and η and in broadening of the relaxation mode distribution. These rheological changes are discussed in relation to the role of TEA ions in thermal scission: Previous NMR studies revealed that only a fraction of TEA ions were tightly bound to the FOS micellar surfaces and these bound ions stabilized the thread/network structures. The concentration of non-bound TEA ions, CTEA *, decreased and finally vanished on increasing φLi up to φLi * ≅ 0.6, and the concentration of the bound TEA ions significantly decreased on a further increase of φLi. The non-bound TEA ions appeared to catalyze the thermal scission of the FOS threads, and the observed increases of τ and η for φLi < 0.55 were attributed to the decrease of CTEA *. On the other hand, the decreases of τ and η as well as the broadening of the mode distribution, found for φLi > 0.55 (where CTEA * ≅ 0), were related to destabilization of the FOS threads/networks due to a shortage of the bound TEA ions and to the existence of concentrated Li+ ions. Viscoelastic data of pure FOSTEA and FOSTEA/FOSLi/TEACl solutions lent support to these arguments for the role of TEA ions in the relaxation of FOSTEA/FOSLi solutions. Received: 12 October 1999/Accepted: 1 November 1999  相似文献   

2.
Dielectric relaxation behavior was examined for 4-4′-n-pentyl-cyanobiphenyl (5CB) and 4-4′-n-heptyl-cyanobiphenyl (7CB) under flow. In quiescent states at all temperatures examined, both 5CB and 7CB exhibited dispersions in their complex dielectric constant ε*(ω) at characteristic frequencies ω c above 106 rad s–1. This dispersion reflected orientational fluctuation of individual 5CB and 7CB molecules having large dipoles parallel to their principal axis (in the direction of CN bond). In the isotropic state at high temperatures, these molecules exhibited no detectable changes of ε*(ω) under flow at shear rates . In contrast, in the nematic state at lower temperatures the terminal relaxation intensity of ε*(ω) as well as the static dielectric constant ε′(0) decreased under flow at . This rheo-dielectric change was discussed in relation to the flow effects on the nematic texture (director distribution) and anisotropy in motion of individual molecules with respect to the director. Received: 14 April 1998 Accepted: 29 July 1998  相似文献   

3.
Nonlinear rheology was examined for concentrated suspensions of spherical silica particles (with radius of 40 nm) in viscous media, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture and pure ethylene glycol. The particles were randomly and isotropically dispersed in the media in the quiescent state, and their effective volume fraction φeff ranged from 0.36 to 0.59. For small strains, the particles exhibited linear relaxation of the Brownian stress σB due to their diffusion. For large step strains γ, the nonlinear relaxation modulus G(t,γ) exhibited strong damping and obeyed the time-strain separability. This damping was related to γ-insensitivity of strain-induced anisotropy in the particle distribution that resulted in decreases of σB/γ. The damping became stronger for larger φeff. This φeff dependence was related to a hard-core volume effect, i.e., strain-induced collision of the particles that is enhanced for larger φeff. Under steady/transient shear flow, the particles exhibited thinning and thickening at low and high γ˙, respectively. The thinning behavior was well described by a BKZ constitutive equation using the G(t,γ) data and attributable to decreases of a Brownian contribution, σB/γ˙. The thickening behavior, not described by this equation, was related to dynamic clustering of the particles and corresponding enhancement of the hydrodynamic stress at high γ˙. In this thickening regime, the viscosity growth η+ after start-up of flow was scaled with a strain γ˙t. Specifically, critical strains γd and γs for the onset of thickening and achievement of the steadily thickened state were independent of γ˙ but decreased with increasing φeff. This φeff dependence was again related to the hard-core volume effect, flow-induced collision of the particles enhanced for larger φeff. Received: 26 June 1998 Accepted: 9 December 1998  相似文献   

4.
Rheo-dielectric behavior was examined for 4−4n-octyl-cyanobiphenyl (8CB) having large dipoles parallel to its principal axis (in the direction of the C≡N bond). In the quiescent state at all temperatures (T) examined, orientational fluctuation of the 8CB molecules was observed as dielectric dispersions at characteristic frequencies ωc>106 s−1. In the isotropic state at high T, no detectable changes of the complex dielectric constant ɛ*(ω) were found under slow flow at shear rates ˙γ≫ωc. In the nematic state at intermediate T, the terminal relaxation intensity of ɛ*(ω) was decreased under such slow flow. In the smectic state at lower T, the flow effect became much less significant. These results were related to the flow-induced changes of the liquid crystalline textures in the nematic and smectic states, and the differences of the rheo-dielectric behavior in these states are discussed in relation to a difference of the symmetry of molecular arrangements in the nematic and smectic textures. Received: 1 October 1998 Accepted: 13 January 1999  相似文献   

5.
The imbedded-fiber retraction (IFR) method was used to study the effect of temperature and PDMS molecular weight on the interfacial tension of PS/PDMS blends. The interfacial tension decreased with increasing temperature and analysis of the temperature dependence using a simple linear fit gave –dγ/dT value of 0.058±0.010 dyn/cm-deg. Reported –dγ/dT values of PS/PDMS blends are highly dependent on the molecular weights of the polymers and can have values that are <0, 0, or >0. Our interfacial tension values were independent of the molecular weight of PDMS and this was attributed to the molecular weights studied here being well above the entanglement values of both polymers. However, analysis of interfacial tension data from this work and the literature showed the following empirical relationship between apparent blend molecular weight, Mb, and interfacial tension of PS/PDMS blends with a correlation of 0.94: γ120+k2Mb (–2/3), where γ0=7.3±0.3 dyn/cm; k2=–517±41 (dyn/cm)(g/mol)2/3.  相似文献   

6.
 The lift force experienced by a spinning sphere moving in a viscous fluid, with constant linear and angular velocities, is measured by means of a trajectographic technique. Measurements are performed in the range of dimensionless angular velocities γ=aω/V lying between 1 and 6, and in the range of Reynolds numbers Re=2aV/ν lying between 10 and 140 (a sphere radius, ω angular velocity, V relative velocity of the sphere centre, ν fluid kinematic viscosity). A notable departure from the theoretical relationship at low Reynolds number, C L =2γ, is obtained, the ratio C L /γ being found to significantly decrease with increasing γ and increasing Re. The following correlation is finally proposed to estimate the lift coefficient in the range 10<Re<140: C L ≅0.45+(2γ−0.45) exp (−0.075γ0.4 Re 0.7) Received: 20 May 1996/Accepted: 9 November 1997  相似文献   

7.
In this experimental work, we investigate the influence of an organic counterion, sodium tosylate, on the rheological properties of an aqueous solution of CTAB at the concentration of 0.05M. With this system we can clearly see shear thickening for small salt concentrations C s and only shear thinning behavior at higher C s characterized by a linear evolution of η=f(γ) in a log-log representation. In these evolutions it is only in a very small domain of concentrations of the salt (near C s =0.035M) that we can observe a nearly constant plateau of the shear stress against shear rate. The values of σ0 (characterizing the stress plateau), G 0 (the plateau modulus) and τR (the relaxation time) obtained by dynamical rheological measurements, allow to compare experimental results obtained to predicted values of the theory of Cates corresponding to the occurrence of shear induced banding structures. Received: 22 July 1997 Accepted: 3 February 1998  相似文献   

8.
The rheology of tetrafluoroethylene/hexafluoropropylene (TFE/HFP) copolymers, also known as Teflon FEP polymers, having different molecular weight and composition (HFP content) was studied by means of a parallel-plate rheometer. Two groups of polymers having different molecular weights with nearly constant polydispersity (around 2.5) were considered; namely, one group having a relatively low melting temperature (amorphous with a high content of HFP) and a second group having a higher melting point (semi-crystalline with a lower content of HFP). The relaxation time spectrum, H(λ), calculated by use of the BSW model (developed for monodisperse linear polymers) followed a scaling relationship in the terminal zone with scaling exponent of 0.13. However, at higher frequencies the model fails to predict adequately the experimental data. The longest relaxation time calculated from both the BSW model and discrete relaxation spectra (λ i ,g i ), which was determined by use of a parsimonious fitting software, depends on the molecular weight in a similar way as the zero-shear viscosity does with the well-established scaling factor of 3.4. The critical molecular weight for the onset of entanglements, M c , was found to be about 100000, a value much higher than those previously reported in literature for other polymers. The rheology of resins in the second group (higher melting point) was found to exhibit a strong dependence on thermal history during oscillatory-shear measurements. The data obtained in experiments at different temperatures without a preheating to a certain value (330°C) exhibited a violation of the time-temperature superposition principle and no well-defined values of the zero-shear viscosity. This is attributed to residual crystallinity even at temperatures well above their melting point (260°C). However, the same experiments with preheating and subsequent cooling to desired temperature resulted into a very good time-temperature scaling. Received: 13 January 1998 Accepted: 6 April 1998  相似文献   

9.
 Experimental results are reported for the response of an initially turbulent boundary layer (Re θ≈1700) to a favourable pressure gradient with a peak value of K≡(−υ/ρU 3 E ) dp/dx equal to 4.4×10-6. In the near-wall region of the boundary layer (y/δ<0.1) the turbulence intensity u′ scales roughly with the free-stream velocity U E until close to the location where K is a maximum whereas in the outer region u′ remains essentially frozen. Once the pressure gradient is relaxed, the turbulence level increases throughout the boundary layer until K falls to zero when the near wall u′ levels show a significant decrease. The intermittency γ is the clearest indicator of a fundamental change in the turbulence structure: once K exceeds 3×10-6, the value of γ in the immediate vicinity of the wall γ s falls rapidly from unity, reaches zero at the location where K again falls below 3×10-6 and then rises back to unity. Although γ is practically zero throughout the boundary layer in the vicinity of γ s =0, the turbulence level remains high. The explanation for what appears to be a contradiction is that the turbulent frequencies are too low to induce turbulent mixing. The mean velocity profile changes shape abruptly where K exceeds 3×10-6. Values for the skin friction coefficient, based upon hot-film measurements, peak at the same location as K and fall to a minimum close to the location where K drops back to zero. Received: 28 January 1998/Accepted: 8 April 1998  相似文献   

10.
Theoretical predictions for the dynamic moduli of long, linear, flexible, monodisperse polymers are summarized and compared with experimental observations. Surprisingly, the predicted 1/2 power scaling of the long-time modes of the relaxation spectrum is not found in the experiments. Instead, scaling with a power of about 1/4 extends all the way up to the longest relaxation times near τ/τ max = 1. This is expressed in the empirical relaxation time spectrum of Baumgaertel-Schausberger-Winter, denoted as “BSW spectrum,” and justifies a closer look at the properties of the BSW spectrum. Working with the BSW spectrum, however, is made difficult by the fact that hypergeometric functions occur naturally in BSW-based rheological material functions. BSW provides no explicit solutions for the dynamic moduli, G (ω), G (ω), or the relaxation modulus G(t). To overcome this problem, close approximations of simple analytical form are shown for these moduli. With these approximations, analysis of linear viscoelastic data allows the direct determination of BSW parameters.  相似文献   

11.
On Finite Shear     
If a pair of material line elements, passing through a typical particle P in a body, subtend an angle Θ before deformation, and Θ+γ after deformation, the pair of material elements is said to be sheared by the amount γ. Here all pairs of material elements at P are considered for arbitrary deformations. Two main problems are addressed and solved. The first is the determination of all pairs of material line elements at P which are unsheared. The second is the determination of that pair of material line elements at P which suffers the maximum shear. All unsheared pairs of material elements in a given plane π(S) with normal S passing through P are considered. Provided π(S) is not a plane of central circular section of the C-ellipsoid at P (where C is the right Cauchy-Green strain tensor), it is seen that corresponding to any material element in π(S) there is, in general, one companion material element in π(S) such that the element and its companion are unsheared. There are, however, two elements in π(S) which have no companions. We call their corresponding directions \textit{limiting directions.} Equally inclined to the direction of least stretch in the plane π(S), the limiting directions play a central role. It is seen that, in a given plane π(S), the pair of material line elements which suffer the maximum shear lie along the limiting directions in π(S). If Θ L is the acute angle subtended by the limitig directions in π(S) before deformation, then this angle is sheared into its supplement π−Θ L so that the maximum shear γ*;(S) is γ*=π− 2 Θ L . If S is given and C is known, then Θ L may be determined immediately. Its calculation does not involve knowing the eigenvectors or eigenvalues of C. When all possible planes through P are considered, it is seen that the global maximum shear γ* G occurs for material elements lying along the limiting directions in the plane spanned by the eigenvectors of C corresponding to the greatest principal stretch λ3 and the least λ1. The limiting directions in this principal plane of C subtend the angle and . Generally the maximum shear does not occur for a pair of material elements which are originally orthogonal. For a given material element along the unit vector N, there is, in general, in each plane π(S passing through N at P, a companion vector M such that material elements along N and M are unsheared. A formula, originally due to Joly (1905), is presented for M in terms of N and S. Given an unsheared pair π(S), the limiting directions in π(S) are seen to be easily determined, either analytically or geometrically. Planar shear, the change in the angle between the normals of a pair of material planar elements at X, is also considered. The theory of planar shear runs parallel to the theory of shear of material line elements. Corresponding results are presented. Finally, another concept of shear used in the geology literature, and apparently due to Jaeger, is considered. The connection is shown between Cauchy shear, the change in the angle of a pair of material elements, and the Jaeger shear, the change in the angle between the normal N to a planar element and a material element along the normal N. Although Jaeger's shear is described in terms of one direction N, it is seen to implicitly include a second material line element orthogonal to N. Accepted: May 25, 1999  相似文献   

12.
This paper concerns the regularity of a capillary graph (the meniscus profile of liquid in a cylindrical tube) over a corner domain of angle α. By giving an explicit construction of minimal surface solutions previously shown to exist (Indiana Univ. Math. J. 50 (2001), no. 1, 411–441) we clarify two outstanding questions. Solutions are constructed in the case α = π/2 for contact angle data (γ1, γ2) = (γ, π − γ) with 0 < γ < π. The solutions given with |γ − π/2| < π/4 are the first known solutions that are not C2 up to the corner. This shows that the best known regularity (C1, ∈) is the best possible in some cases. Specific dependence of the H?lder exponent on the contact angle for our examples is given. Solutions with γ = π/4 have continuous, but horizontal, normal vector at the corners in accordance with results of Tam (Pacific J. Math. 124 (1986), 469–482). It is shown that our examples are C0, β up to and including the corner for any β < 1. Solutions with |γ − π/2| > π/4 have a jump discontinuity at the corner. This kind of behavior was suggested by numerical work of Concus and Finn (Microgravity sci. technol. VII/2 (1994), 152–155) and Mittelmann and Zhu (Microgravity sci. technol. IX/1 (1996), 22–27). Our explicit construction, however, allows us to investigate the solutions quantitatively. For example, the trace of these solutions, excluding the jump discontinuity, is C2/3.  相似文献   

13.
The unsteady natural convection boundary layer flow over a semi-infinite vertical cylinder is considered with combined buoyancy force effects, for the situation in which the surface temperature T w(x) and C w(x) are subjected to the power-law surface heat and mass flux as K(T /r) = −ax n and D(C /r) = −bx m . The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson method. Numerical results are obtained for different values of Prandtl number, Schmidt number ‘n’ and ‘m’. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt and Sherwood numbers are shown graphically. The local Nusselt and Sherwood number of the present study are compared with the available result and a good agreement is found to exist. Received on 7 July 1998  相似文献   

14.
We study the short-time relaxation dynamics of crosslinked and uncrosslinked networks of semi-flexible polymers using diffusing wave spectroscopy (DWS). The networks consist of concentrated solutions of actin filaments, crosslinked with increasing amounts of α-actinin. Actin filaments (F-actin) are long semi-flexible polymers with a contour length 1–100μm and a persistence length of 5–15μm; α-actinin is a small 200kDa homodimer with two actin-binding sites. Using the large bandwidth of DWS, we measure the mean-square-displacement of 0.96μm diameter microspheres imbedded in the polymer network, from which we extract the frequency-dependent viscoelastic moduli via a generalized Langevin equation. DWS measurements yield, in a single measurement, viscoelastic moduli at frequencies up to 105Hz, almost three decades higher in frequency than probed by conventional mechanical rheology. Our measurements show that the magnitude of the small-frequency plateau modulus of F-actin is greatly enhanced in the presence of α-actinin, and that the frequency dependence of the viscoelastic moduli is much stronger at intermediate frequencies. However, the frequency-dependence of loss and storage moduli become similar for both crosslinked and uncrosslinked networks at large frequencies, G′(ω)∝G′′(ω)∝ω0.75±0.08. This high-frequency behavior is due to the small-amplitude, large-frequency lateral fluctuations of actin filaments between entanglements. Received: 20 January 1998 Accepted: 12 February 1998  相似文献   

15.
Nonlinear MHD Kelvin-Helmholtz (K-H) instability in a pipe is treated with the derivative expansion method in the present paper. The linear stability problem was discussed in the past by Chandrasekhar (1961)[1] and Xu et al. (1981).[6]Nagano (1979)[3] discussed the nonlinear MHD K-H instability with infinite depth. He used the singular perturbation method and extrapolated the obtained second order modifier of amplitude vs. frequency to seek the nonlinear effect on the instability growth rate γ. However, in our view, such an extrapolation is inappropriate. Because when the instability sets in, the growth rates of higher order terms on the right hand side of equations will exceed the corresponding secular producing terms, so the expansion will still become meaningless even if the secular producing terms are eliminated. Mathematically speaking, it's impossible to derive formula (39) when γ 0 2 is negative in Nagano's paper.[3]Moreover, even as early as γ 0 2 → O+, the expansion becomes invalid because the 2nd order modifier γ2 (in his formula (56)) tends to infinity. This weakness is removed in this paper, and the result is extended to the case of a pipe with finite depth. Theproject is supported by the National Natural Science Foundation of China.  相似文献   

16.
We study the spectral and linear stability of Riemann solutions with multiple Lax shocks for systems of conservation laws. Using a self-similar change of variables, Riemann solutions become stationary solutions for the system u t + (Df(u) − x I)u x = 0. In the space of O((1 + |x|)−η) functions, we show that if , then λ is either an eigenvalue or a resolvent point. Eigenvalues of the linearized system are zeros of the determinant of a transcendental matrix. On some vertical lines in the complex plane, called resonance lines, the determinant can be arbitrarily small but nonzero. A C 0 semigroup is constructed. Using the Gearhart–Prüss Theorem, we show that the solutions are O(e γ t ) if γ is greater than the real parts of the eigenvalues and the coordinates of resonance lines. We study examples where Riemann solutions have two or three Lax-shocks. Dedicated to Professor Pavol Brunovsky on his 70th birthday.  相似文献   

17.
Maik Nowak 《Rheologica Acta》2001,40(4):366-372
The first normal stress differences N 1 of a highly dilute cationic surfactant solution are investigated in a cone-and-plate rheometer. In continuation of a previous paper (Nowak 1998), where the buildup of a shear induced structure in such a solution was attained after a reduced deformation, the N 1 turned out to be in proportion to the square of the shear rate γ˙ reduced by a critical value γ˙ c in a first range above γ˙ c . At higher shear rates the N 1 tend to lower values than predicted by this relation. Relaxation experiments were performed in the same geometry to determine the characteristic time scales of the shear induced state's decay. In the lower range above &γdot; c the stress decay is a monoexponential process, while a second time constant has to be introduced to describe the relaxation in that range, where the N 1 deviate from the parabolic dependence of the reduced shear rate. Received: 10 May 1999 Accepted: 15 November 2000  相似文献   

18.
Measurements of the twist viscosity, γ1(DLS) and twist elastic coefficient, K22(DLS) by electric-field-dependent dynamic light scattering (EFDLS) are reported for low molar mass nematics (LMMNs) 4′-heptyl-4-cyanobiphenyl (7CB) and 4′-octyl-4-cyanobiphenyl (8CB), and their binary mixtures at several temperatures in the nematic state. The results are compared with values (γ1(Rheol)=α3–α2) computed from rheological measurements of the Leslie viscosities α2 and α3. For the binary mixtures, at each temperature, the measured twist viscosity γ1(DLS) and corresponding twist elastic constant K22(DLS) show approximately a linear additive dependence on concentration. The calculated twist viscosity, γ1(Rheol), agrees with γ1(DLS) for the pure components, but is significantly smaller for the binary mixtures. Our observations appear to be consistent with a recent report of a discrepancy between values of the tumbling parameter λ, determined using a small-strain oscillatory optical technique, vs those measured by a rheological method. These results suggest that, in the rheological measurements at large strains, the rate of director rotation for mixtures may be affected by a flow-induced change in structure, e.g., shear-induced biaxiality. Received: 17 March 2000 Accepted: 17 July 2000  相似文献   

19.
The method presented in this paper allows to calculate the molecular weight distribution (MWD) of linear homopolymer melts from the complex shear modulus data measured in a wide frequency domain. An empirical blending law on complex viscosities is first developed; as a consequence, the variations of the storage and loss modulus as a function of MWD are presented. This simulation demonstrates also the role of the shape of the MWD itself, and shows that one should not postulate a priori the shape of the MWD. An efficient numerical approach based on a Tikhonov regularization method with constraint is used to solve this ill-posed problem; the MWD is hence derived without any assumption on its shape. This method is first applied on simulated data to prove its numerical efficiency. Then the inversion method is applied on complex moduli data of various commercial polymers (polypropylene, polyethylene and polystyrene) and on an artificial mixture of polystyrene that have been presented in the literature. For amorphous polymers, the coupling of the terminal relaxation domains with the transition region at higher frequency leads to errors in the low molecular weight tail: one way to solve this problem is to cut off the experimental data at the high frequencies. This general method needs only a few physical parameters, namely the scaling law for the Newtonian viscosity η0=f(M w ) and the plateau modulus G N 0, and leads to reasonable results with respect to the simplicity of the viscoelastic model used. Received: 27 October 1997 Accepted: 24 February 1998  相似文献   

20.
We study an eigenvalue problem associated with a reaction-diffusion-advection equation of the KPP type in a cellular flow. We obtain upper and lower bounds on the eigenvalues in the regime of a large flow amplitude A ≪ 1. It follows that the minimal pulsating traveling front speed c *(A) satisfies the upper and lower bounds C 1 A 1/4c *(A)≦ C 2 A 1/4. Physically, the speed enhancement is related to the boundary layer structure of the associated eigenfunction – accordingly, we establish an “averaging along the streamlines” principle for the unique positive eigenfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号