首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have been extensive studies on the large time behavior of solutions to systems on gas motions, such as the Navier-Stokes equations and the Boltzmann equation. Recently, an approach is introduced by combining the energy method and the spectral analysis to the study of the optimal rates of convergence to the asymptotic profiles. In this paper, we will first illustrate this method by using some simple model and then we will present some recent results on the Navier-Stokes equations and the Boltzmann equation. Precisely, we prove the stability of the non-trivial steady state for the Navier-Stokes equations with potential forces and also obtain the optimal rate of convergence of solutions toward the steady state. The same issue was also studied for the Boltzmann equation in the presence of the general time-space dependent forces. It is expected that this approach can also be applied to other dissipative systems in fluid dynamics and kinetic models such as the model system of radiating gas and the Vlasov-Poisson-Boltzmann system.   相似文献   

2.
The regularity of solutions to the Boltzmann equation is a fundamental problem in the kinetic theory. In this paper, the case with angular cut-off is investigated. It is shown that the macroscopic parts of solutions to the Boltzmann equation, i.e., the density, momentum and total energy are continuous functions of(x, t) in the region R3×(0, +∞). More precisely, these macroscopic quantities immediately become continuous in any positive time even though they are initially discontinuous and the discontinuities of solutions propagate only in the microscopic level. It should be noted that such kind of phenomenon can not happen for the compressible Navier-Stokes equations in which the initial discontinuities of the density never vanish in any finite time, see [22]. This hints that the Boltzmann equation has better regularity effect in the macroscopic level than compressible Navier-Stokes equations.  相似文献   

3.
We study the hypocoercivity property for some kinetic equations in the whole space and obtain the optimal convergence rates of solutions to the equilibrium state in some function spaces. The analysis relies on the basic energy method and the compensating function introduced by Kawashima to the classical Boltzmann equation and developed by Glassey and Strauss in the relativistic setting. It is also motivated by the recent work (Duan et al., 2008 [8]) on the Boltzmann equation by combining the spectrum analysis and energy method. The advantage of the method introduced in this paper is that it can be applied to some complicated system whose detailed spectrum is not known. In fact, only some estimates through the Fourier transform on the conservative transport operator and the dissipation of the linearized operator on the subspace orthogonal to the collision invariants are needed.  相似文献   

4.
The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investi...  相似文献   

5.
The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier-Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.  相似文献   

6.
We study the zero dissipation limit problem for the one-dimensional Navier-Stokes equations of compressible, isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions. We prove that the solutions of the Navier-Stokes equations with centered rarefaction wave data exist for all time, and converge to the centered rarefaction waves as the viscosity vanishes, uniformly away from the initial discontinuities. In the case that either the effects of initial layers are ignored or the rarefaction waves are smooth, we then obtain a rate of convergence which is valid uniformly for all time. Our method of proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Yan Guo 《偏微分方程通讯》2013,38(12):2165-2208
We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.  相似文献   

8.
In this paper, we study the vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system in a bounded domain. We first show the local existence of smooth solutions of the Euler/Allen-Cahn equations by modified Galerkin method. Then using the boundary layer function to deal with the mismatch of the boundary conditions between Navier-Stokes and Euler equations, and assuming that the energy dissipation for Navier-Stokes equation in the boundary layer goes to zero as the viscosity tends to zero, we prove that the solutions of the Navier-Stokes/Allen-Cahn system converge to that of the Euler/Allen-Cahn system in a proper small time interval. In addition, for strong solutions of the Navier-Stokes/Allen-Cahn system in 2D, the convergence rate is cν1/2.  相似文献   

9.
《偏微分方程通讯》2013,38(5-6):969-989
Abstract

We study the long-time behavior of a linear inhomogeneous Boltzmann equation. The collision operator is modeled by a simple relaxation towards the Maxwellian distribution with zero mean and fixed lattice temperature. Particles are moving under the action of an external potential that confines particles, i.e., there exists a unique stationary probability density. Convergence rate towards global equilibrium is explicitly measured based on the entropy dissipation method and apriori time independent estimates on the solutions. We are able to prove that this convergence is faster than any algebraic time function, but we cannot achieve exponential convergence.  相似文献   

10.
This paper studies the asymptotic equivalence of the Broadwell model of the nonlinear Boltzmann equation to its corresponding Euler equation of compressible gas dynamics in the limit of small mean free path ε. It is shown that the fluid dynamical approximation is valid even if there are shocks in the fluid flow, although there are thin shock layers in which the convergence does not hold. More precisely, by assuming that the fluid solution is piecewise smooth with a finite number of noninteracting shocks and suitably small oscillations, we can show that there exist solutions to the Broadwell equations such that the Broadwell solutions converge to the fluid dynamical solutions away from the shocks at a rate of order (ε) as the mean free path ε goes to zero. For the proof, we first construct a formal solution for the Broadwell equation by matching the truncated Hilbert expansion and shock layer expansion. Then the existence of Broadwell solutions and its convergence to the fluid dynamic solution is reduced to the stability analysis for the approximate solution. We use an energy method which makes full use of the inner structure of time dependent shock profiles for the Broadwell equations.  相似文献   

11.
The main purpose of this paper is to study the asymptotic equivalence of the Boltzmann equation for the hard-sphere collision model to its corresponding Euler equations of compressible gas dynamics in the limit of small mean free path. When the fluid flow is a smooth rarefaction (or centered rarefaction) wave with finite strength, the corresponding Boltzmann solution exists globally in time, and the solution converges to the rarefaction wave uniformly for all time (or away from t=0) as ?→0. A decomposition of a Boltzmann solution into its macroscopic (fluid) part and microscopic (kinetic) part is adopted to rewrite the Boltzmann equation in a form of compressible Navier-Stokes equations with source terms. In this setting, the same asymptotic equivalence of the full compressible Navier-Stokes equations to its corresponding Euler equations in the limit of small viscosity and heat conductivity (depending on the viscosity) is also obtained.  相似文献   

12.
We present, for the BGK equation, asymptotic limits leading to various equations of incompressible and compressible fluid mechanics: the Navier-Stokes equations, the linearized Navier-Stokes equations, the Euler equation, the linearized Euler equation, and the compressible Euler equation. We state a convergence theorem for the nonlinear Navier-Stokes, as well as a result for the linear Navier-Stokes case, and for the compressible Euler equation.  相似文献   

13.
In this paper, we investigate the large-time behavior of solutions to an outflow problem for compressible Navier-Stokes equations. In 2003, Kawashima, Nishibata and Zhu [S. Kawashima, S. Nishibata, P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 240 (2003) 483-500] showed there exists a boundary layer (i.e., stationary solution) to the outflow problem and the boundary layer is nonlinearly stable under small initial perturbation. In the present paper, we show that not only the boundary layer above but also the superposition of a boundary layer and a rarefaction wave are stable under large initial perturbation. The proofs are given by an elementary energy method.  相似文献   

14.
The Vlasov–Maxwell–Boltzmann system is a system that describes the dynamics of charged particles when there is electromagnetic field. There have been extensive studies on the energy estimates and global existence of solutions to the one- and two-species Vlasov–Maxwell–Boltzmann system when the background density is constant. In this work, we first deal with the energy estimates of the one-species Vlasov–Maxwell–Boltzmann system when the background density is a small perturbation from the stationary state. Then, we handle the dissipation rate for the linearized one-species Vlasov–Maxwell–Boltzmann system with the background density having a small perturbation around the stationary state.  相似文献   

15.
This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1–3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].  相似文献   

16.
In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.  相似文献   

17.
We show convergence of a Brinkman-type penalization of the compressible Navier-Stokes equation. In particular, the existence of weak solutions for the system in domains with boundaries varying in time is established.  相似文献   

18.
The initial boundary value problem for the compressible Navier-Stokes equation is considered in an infinite layer of Rn. It is proved that if n?3, then strong solutions to the compressible Navier-Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations, provided that the Reynolds and Mach numbers are sufficiently small. The proof is given by a variant of the Matsumura-Nishida energy method based on a decomposition of solutions associated with a spectral property of the linearized operator.  相似文献   

19.
In this paper, we study the dynamics of a two-dimensional stochastic Navier-Stokes equation on a smooth domain, driven by linear multiplicative white noise. We show that solutions of the 2D Navier-Stokes equation generate a perfect and locally compacting C1,1 cocycle. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. The Lyapunov spectrum characterizes the asymptotics of the cocycle near an equilibrium/stationary solution. We give sufficient conditions on the parameters of the Navier-Stokes equation and the geometry of the planar domain for hyperbolicity of the zero equilibrium, uniqueness of the stationary solution (viz. ergodicity), local almost sure asymptotic stability of the cocycle, and the existence of global invariant foliations of the energy space.  相似文献   

20.
For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号