首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Conclusions 1. Upon maturation, bone callus not only goes through a series of morphological chantes but also changes in mechanical properties. This is true primarily for an increase in the elasticity modulus.2. The specific energy of dispersion and loss modulus have maxima which occur after 25 to 30 days. This behavior is apparently related to the fact that bone callus at this period has the nature of spongy bone tissue. For compact bone tissue, on the other hand, these values are equal to zero.3. The area of the hysteresis loop is almost completely independent of the frequency upon cyclic stressing.4. The elasticity modulus is proportional to the x-ray density of the samples, which thus may serve as an objective criterion of the degree of maturity of callus.Smolensk State Medical Institute. Translated from Mekhanika Polimerov, No. 5, pp. 896–900, September–October, 1977.  相似文献   

2.
From the measurements of the main elements of the microstructure of compact bone material, it is concluded that the theoretical model of a transtropic material can be applied to bone tissue. This conclusion is confirmed by the experimental data obtained on compression. The correlation connection between the ultimate strength of compact bone material and the elasticity modulus has been found. It is shown that the anisotropy of the compact material is satisfactorily described by the tensor formula.Scientific-Research Institute of Medical Radiology, Academy of Medical Sciences of the USSR, Obninsk. S. M. Kirov Leningrad Order of Lenin Wood Technology Academy. Translated from Mekhanika Polimerov, No. 4, pp. 711–716, July–August, 1972.  相似文献   

3.
The dynamic elastic H and shear Gdyn moduli of compact bone tissue have been determined by investigating the natural vibration frequency of specimens obtained from long tubular human bones. The modulus of elasticity E has also been determined by conducting mechanical bending tests. The value of the H modulus is found to change in the course of storage.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 167–172, January–February, 1971.  相似文献   

4.
A new theoretical basis is proposed for the biomechanism of fractures of the diaphysis of long tubular bones resulting from bending deformation. Bone damage is shown to result from the concentration of maximum tensile stresses on the tension side and shear stresses in the compression zone. The origin of fan-shaped cracks and oblique fractures, occurring individually or in combination, is explained in these terms.Altai State Medical Institute. Translated from Mekhanika Polimerov, No. 2, pp. 318–322, March–April, 1971.  相似文献   

5.
Conclusion In lengthy storage of PEO films the amorphous part of the material is subjected most to destruction under the effect of environmental factors; consequently, films with a higher degree of crystallinity are more suitable for storage. The resistance of individual sections of film to environmental factors is a random variable, and the nature of the encountered patterns of destruction can therefore be reproduced with the aid probabilistic models.Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 4, pp. 464–470, July–August, 1994.  相似文献   

6.
Nondestructive and destructive methods have been used to establish a series of elastic and strength characteristics of the compact bone tissue in six zones of the cross section of the diaphysis of the human tibia. The quantity of five characteristic biochemical substances present in each zone has been determined. The experiments show that, from the standpoint of continuum mechanics, the compact bone tissue is an orthotropic material and that the bone is nonhomogeneous with respect to biochemical composition. The rank correlation coefficients between the mechanical characteristics and the biochemical concentrations are subjected to a detailed analysis. The important effect of the common glycoproteins on the elastic and strength properties of bone tissue in tension is established.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 138–145, January–February, 1973.  相似文献   

7.
The true adhesion is looked upon as the sum of the experimentally determined strength of the glued area, internal stresses, and unaccountable technological losses (unrealized contacts). It has been established that the internal stresses do not depend on the value of the adhesion strength.Translated from Mekhanika Polimerov, No. 2, pp. 356–359, March–April, 1976.  相似文献   

8.
The nature of the variation of the moduli of elasticity, shear moduli, and flexural and torsional decrements of human compact bone tissue during biological aging has been investigated. It has been found that the moduli of elasticity and shear moduli increase sharply up to age 20–25 and then progressively fall; the distribution of the modulus of elasticity over the individual zones of the cross section of the tibia changes significantly with age. By investigating the changes in the logarithmic decrements by nondestructive methods it is possible to estimate the changes in the mechanical and structural properties of the bone.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 885–891, September–October, 1974.  相似文献   

9.
Conclusions 1. There is a change in the initial elastic properties of compact bone tissue when a load is removed after repeated loading.2. The elasticity modulus after the load has been removed can be assumed to be independent of the level of stress 11k at which the load was removed.3. With repeat loadings, the tangential elastic modulus increases for the same level of stress when the off-loading stress 11k is increased.4. The value of the irreversible expended specific energy of deformation W increases sharply as the moment of destruction approaches, while its distribution through the zones of the cross section of bone provides good rheological adaptation of the bone to external loads in human walking.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 882–890, September–October, 1976.  相似文献   

10.
This paper discusses the variation in the deformation and strength properties of compact bone tissue during torsion in various zones of the cross section of human tibia. A correlation has been found between the specific energy of deformation consumed during the loading process and the level of stress attained. The degree of correlation between the deformation and strength properties of the bone tissue has been studied as a function of the concentration of certain biochemical substances in its composition.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No.5, pp. 911–918, September–October, 1973.  相似文献   

11.
The effect of dressing a fiber on the wetting of it by a polyethylene melt is studied. The interconnection between the value of the adhesive strength and the residual stresses at the boundary between the glass fiber and polymer is analyzed. The role of the residual stresses during use of the glass-reinforced material and the part played by the chemical interaction between the polyethylene and the fiber in the water-resistant composition obtained in this way is analyzed.D. I. Mendeleev Moscow Chemicotechnical Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1048–1052, November–December, 1972.  相似文献   

12.
Hardness of the human tibia   总被引:1,自引:0,他引:1  
The hardness distribution over the compact bone tissue of the human tibia is examined along the length and in six different zones of the cross section of the bone. A correlation is established between the hardness numbers, on the one hand, and the characteristics of the mechanical properties and the biochemical composition of the bone tissue, on the other. The three-dimensional structure of the equal-hardness formations is studied. The results confirm the assumptions of [1] concerning the specific functions of each zone in the rheological adaptation of the bone to physiological loads.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga; Scientific Research Institute of Traumatology and Orthopedics, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1101–1107, November–December, 1973.  相似文献   

13.
The values of all the lateral strain coefficients of the compact bone tissue of the human tibia have been experimentally determined. The variation of these coefficients in six zones of the cross section have been studied at various stress levels, including the ultimate strengths in the corresponding directions. It has been established that the bone tissue possesses orthotropy of the elastic properties. The change in the volume of the bone tissue during deformation has been studied. The bulk moduli for both uniaxial and hydrostatic loading have been determined. A bulk deformation parameter characterizing the strain energy expended in producing a volume change of 100% is introduced. The coefficients of the rank correlation between the lateral strain coefficients and bulk moduli, on the one hand, and the concentrations of a number of biochemical substances found in bone tissue, on the other, are analyzed.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1089–1100, November–December, 1973.  相似文献   

14.
The strength and coefficients of friction of new heat-resistant composite materials consisting of metallopolymers of iron and cobalt based on molybdosilicic and tungstosilicic heteropolyacids have been studied. It has been established that the use of a lubricant in the frication of metallopolymers over steel brings about a sharper deerease in the coefficients of friction than in the case of the friction of the compact material; this is due to the ability of the metallopolymers to absorb the lubricant material.Kiev Automobile-Road Institute. Translated from Mekhanika Polimerov, No. 5, pp. 931–933, September–October, 1973.  相似文献   

15.
Various methods of experimentally determining the shear moduli G12, G13, and G23 of compact human bone tissue have been examined. The results of the study confirm the previous view that compact tissue has properties similar to those of a transversally isotropic material. It has been established that the shear modulus along the diaphysis of the tibia at the level of girdles 9–24 does not change significantly. There is a definite difference in the rigidity characteristics with respect to the regions of the cross section. The highest values for the shear modulus were established in the angle regions of the cross section. There is a linear dependence of the shear stress 12 on the torsional angle 1 within the experimental range of stresses (1290 kg/cm2).Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 697–705, July–August, 1972.  相似文献   

16.
Using low-density polyethylene, whose viscoelastic properties are nonlinear at high stresses, within reasonable limits of stress and time it is possible (under certain conditions) to use time-stress superposition, as well as time-temperature superposition, to predict the long-term creep of polymer materials. A variant of the compact approximation of nonlinear vicoelasticity effects in polymers is proposed.Mekhanika Polimerov, Vol. 4, No. 2, pp. 379–381, 1968Instantaneous elastic strains excluded.  相似文献   

17.
The kinetics of the temperature residual stresses and strains in thick-walled reinforced-plastic cylinders and rings have been experimentally investigated employing a special procedure for continuously monitoring the internal strains and stresses in the various zones of the semifinished product during the heat treatment stage. The effect of the resin polymerization (polycondensation) temperature and the mandrel material on the magnitude and distribution of the temperature stresses is considered. The total residual stresses have been determined by a nondestructive strain-gauge method with differentiation of the components.Translated from Mekhanika Polimerov, No. 6, pp. 1040–1046, November–December, 1971.  相似文献   

18.
Conclusions The use of internal heating in the manufacture of plastic shells by the cable-pressing method produces significantly higher compressing stresses in the shell, thus improving the quality of the material.Translated from Mekhanika Polimerov, No. 2, pp. 220–224, March–April, 1977.  相似文献   

19.
A technique for calculating the residual stresses in wound components made out of mixed carbon-fiber-and glass-fiber-reinforced plastics and the results of the calculations are presented. The effect of the conditions under which the components are wound on the magnitude and nature of the residual stresses distribution in components made out of combined composites is investigated. The results of the calculations are compared with the experimental values.Translated from Mekhanika Polimerov, No. 6, pp. 996–1004, November–December, 1975.  相似文献   

20.
Conclusions As in the case of the selection of the simplified equations used in the theory of nonlinear viscoelasticity, variants of the equations of the temperature-time dependence of the strength of polymer materials are constructed on the basis of some similarity condition of the experimental lifetime curves. Principles according to which it would be possible to make a prior assignment of a material to some class on the basis of similarity criteria only using, for example, information on chemical composition and structure without testing for long-term strength are lacking. The equations presented in this review may be used for predicting the lifetime only when the nature of the resistance to long-term destruction over time in a given temperature range exactly corresponds to the assumptions inherent in some equation. Thus, the selection of the boundaries of the temperature ranges, in which we may assume uniformity for the deformation and destruction mechanisms leading in the final analysis to identical types of destruction, becomes most significant. Hence, the parametrical methods have a series of advantages since they do not place rigid limitations on the nature of the long-term strength curves at a given temperature.The temperature-time analogy method is the most favored method for predicting long-term strength since this method, without negating other approaches, is their generalization. The use of this method is most promising for cases of a complex stressed state and complex stress pathways. In this case, the temperature -time shift function is most conveniently introduced into the surface strength functionals.Translated from Mekhanika Kompozitnykh Materialov, No. 4, pp. 694–704, July–August, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号